RICCA RESOURCES LIMITED

(Previously: Malamute Minerals Pty Ltd)

AND CONTROLLED ENTITIES
 ACN 617729521

FINANCIAL REPORT

FOR THE HALF-YEAR

ENDED 31 DECEMBER 2021

DIRECTORS' REPORT

The Directors submit their report for the half-year ended 31 December 2021.

DIRECTORS

The names of the Directors in office during the financial period and up to the date of this report are:

Stuart Crow (appointed 19 August 2021)
Neil Herbert (appointed 19 August 2021)
Vincent Mascolo (deceased 10 March 2022)
Lennard A Kolff Van Oosterwijk
Amanda Harsas (appointed 11 March 2022)

CORPORATE STRUCTURE

Ricca Resources Limited ("Ricca"), formerly Malamute Minerals Pty Ltd is a company limited by shares that is incorporated and domiciled in Australia.

Ricca Resources Limited's registered office is at Level 33, Australia Square, 264 George St, Sydney, Australia.

Principal activities

Ricca Resources Limited ("Ricca" or "the Company") corporate strategy is to create and sustain shareholder value through the discovery and development of its gold assets in Côte d'Ivoire and Chad, as well as the ongoing review of strategic opportunities.

The Company holds a combined $4,728 \mathrm{~km} 2$ portfolio of granted and under application tenure, including 3,982km2 of prospective Birimian terrain in Côte d'Ivoire and 746 km 2 of terrain considered prospective for intrusion related gold systems in Chad within the under-explored Sub-Saharan Metacraton.

Ricca Resources Limited is a newly public unlisted company. On 1st June 2021, Atlantic Lithium Limited announced its intention to progress a demerger of the Company's gold assets in Côte d'lvoire and Chad into a new gold focused entity structured to permit quotation on a recognised stock exchange The demerger unlocks shareholder value through the creation of a pure gold focussed entity and pure lithium focussed entity. On 22 December Atlantic Lithium Limited completed the demerger of Ricca and the Company's gold assets. All information and results discussed in this report have not previously been announced by Atlantic Lithium Limited and are included here for the first time.

CÔTE D'IVOIRE

The Company, via earn-in agreements or outright ownership, holds access rights to three strategic portfolios covering an area of $3,982 \mathrm{~km}^{2}$ prospective for gold in Côte d'Ivoire, West Africa. The tenement portfolios cover major shear zones and associated structures adjacent to proven, gold bearing structures. All projects are well serviced, with an extensive bitumen road network as well as a well-established cellular network (refer Figure 1).

Figure 1: Côte d'lvoire gold portfolio on geology background.

Zaranou License:

Drilling activities were completed at the Zaranou gold license, located approximately 200 km north-east of the capital Abidjan, adjacent to the border with Ghana and covering $397 \mathrm{~km}^{2}$ of highly prospective Birimian terrain. The drilling efforts were focussed at the Ehuasso-Coffee Bean-Mbasso target where artisanal workings are most intense. Drilling also commenced at the Ebilassokro and Yakassé targets (refer Figure 2 and Figure 3).

Figure 2: Zaranou gold license target areas with background soils and greyscale TMI aeromagnetics image.

Figure 3: Artisanal workings within the license area and visible gold observed in a washing pan.

All 1 m primary assay results were received for the $51,539 \mathrm{~m}$ third phase drilling programme completed during 2021, including $20,323 \mathrm{~m}$ in 110 reverse circulation ("RC") holes and $31,216 \mathrm{~m}$ in 611 air core (" AC ") holes at the Ehuasso, Ebilassokro, Yakassé, M'Basso and Coffee Bean/Super pit targets at 80 m and 160 m spaced drill traverses. The Company also received assay results for 645 m of diamond drilling ("DD") completed in three holes at the Ehuasso target for geology, RC twinning, and density work. To date, a total of approximately $85,000 \mathrm{~m}$, including $59,010 \mathrm{~m}$ of $A C, 24,050 \mathrm{~m}$ of RC and 1910 m of DD, has been drilled at Zaranou.

Highlight gold drill intersections at greater than 10 gram-meters (grade x intersection length) for the $1 m$ primary samples are reported in Table 1 and Table 2, and Figure 1 below. All intersections reported in Table 1, Table 2 and Appendix 1 are at a $0.1 \mathrm{~g} / \mathrm{t}$ cut-off and maximum of 1 m of internal dilution for the 1 m primary samples.

All AC and RC sampling was completed at the drill site, consisting of initial 4 m composites submitted for analysis; of which all composites greater than $0.1 \mathrm{~g} / \mathrm{t}$ gold are re-submitted for analysis at 1 m intervals from retained primary samples at the project site. All DD sampling was completed on half core at the core shed after geological, geotechnical, density logging and photography. ALS laboratory completed sample preparation in Côte d'Ivoire and sample analysis in Burkina Faso, with results passing internal and laboratory QA/QC protocols, providing confidence in reported results. All drilling to date has been completed at -55 to -60 degrees dip.

Table 1: Newly reported drill intersection highlights over Ehuasso at greater than 10 gram-metres for $1 m$ RC and $A C$ primary samples at a $0.1 \mathrm{~g} / \mathrm{t}$ cut-off and maximum 1 m of internal dilution.

Prospect	Hole_ID	Drill Type	From m	To m	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZARC0102	RC	101	115	14	10.52	147.25	201	ZARC0102: 14 m at $10.52 \mathrm{~g} / \mathrm{t}$ from 101 m incl. $1 \mathrm{~m} @ 6.8 \mathrm{~g} / \mathrm{t}, 72.6 \mathrm{~g} / \mathrm{t}, 14.6 \mathrm{~g} / \mathrm{t}$, $4.1 \mathrm{~g} / \mathrm{t}, 7.6 \mathrm{~g} / \mathrm{t}, 9.1 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}, 4.9 \mathrm{~g} / \mathrm{t}, 17.5 \mathrm{~g} / \mathrm{t}, 3.2 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0104	RC	145	163	18	3.23	58.06	200	ZARC0104: 18 m at $3.23 \mathrm{~g} / \mathrm{t}$ from 145 m incl. 1 m @ $14.8 \mathrm{~g} / \mathrm{t}, 13.2 \mathrm{~g} / \mathrm{t}, 3.9 \mathrm{~g} / \mathrm{t}$, $5.9 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 4.9 \mathrm{~g} / \mathrm{t}, 3.6 \mathrm{~g} / \mathrm{t}, 3.9 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0046	RC	111	120	9	5.94	53.42	150	ZARC0046: 9 m at $5.94 \mathrm{~g} / \mathrm{t}$ from 111 m incl. $1 \mathrm{~m} @ 8.5 \mathrm{~g} / \mathrm{t}, 37.1 \mathrm{~g} / \mathrm{t}, 2.3 \mathrm{~g} / \mathrm{t}$, $2.9 \mathrm{~g} / \mathrm{t}$	1 m primary	1 mc co 0.1
Ehuasso	ZARC0075	RC	67	74	7	7.31	51.19	260	ZARC0075: 7 m at $7.31 \mathrm{~g} / \mathrm{t}$ from 67 m incl. 1 m @ $3.6 \mathrm{~g} / \mathrm{t}, 31.73 \mathrm{~g} / \mathrm{t}, 14.58 \mathrm{~g} /$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	56	63	7	6.86	48.00	199	ZARC0087: 7 m at $6.86 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ $43.5 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	63	64	1	46.31	46.31	180	ZARC0097: 1 m at $46.31 \mathrm{~g} / \mathrm{t}$ from 63 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	37	67	30	1.37	41.14	204	ZARC0029: 30 m at $1.37 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 7.4 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}, 4.5 \mathrm{~g} / \mathrm{t}$, $2.2 \mathrm{~g} / \mathrm{t}, 4.3 \mathrm{~g} / \mathrm{t}, 5.3 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0067	RC	79	86	7	5.35	37.44	228	ZARC0067: 7 m at $5.35 \mathrm{~g} / \mathrm{t}$ from 79 m incl. $1 \mathrm{~m} @ 3 \mathrm{~g} / \mathrm{t}, 13.6 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}$, $15.3 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0099	RC	98	107	9	4.08	36.74	205	ZARC0099: 9 m at $4.08 \mathrm{~g} / \mathrm{t}$ from 98 m incl. 1 m @ $1.7 \mathrm{~g} / \mathrm{t}, 28.6 \mathrm{~g} / \mathrm{t}, 5.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	73	87	14	2.58	36.14	200	ZARC0101: 14 m at $2.58 \mathrm{~g} / \mathrm{t}$ from 73 m incl. $1 \mathrm{~m} @ 3.2 \mathrm{~g} / \mathrm{t}, 3.4 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$, $3.6 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 3.4 \mathrm{~g} / \mathrm{t} 10.6 \mathrm{~g} / \mathrm{t}, 5.8 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0032	RC	0	64	64	0.47	30.22	129	ZARC0032: 64 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}, 8.6 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	28	45	17	1.45	24.72	201	ZARCOO36: 17 m at $1.45 \mathrm{~g} / \mathrm{t}$ from 28 m incl. $1 \mathrm{~m} @ 15.5 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$, $1.1 \mathrm{~g} / \mathrm{t}, 1.5 \mathrm{~g} / \mathrm{t}$	1 m primary	1 mc co 0.1
Ehuasso	ZARC0025	RC	110	136	26	0.94	24.53	200	ZARC0025: 26 m at $0.94 \mathrm{~g} / \mathrm{t}$ from 110 m incl. $1 \mathrm{~m} @ 6.6 \mathrm{~g} / \mathrm{t}, 7.6 \mathrm{~g} / \mathrm{t}, 4.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0027	RC	71	76	5	4.82	24.08	200	ZARC0027: 5 m at $4.82 \mathrm{~g} / \mathrm{t}$ from 71 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}, 19.5 \mathrm{~g} / \mathrm{t}, 2.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0033	RC	48	88	40	0.59	23.44	124	ZARC0033: 40 m at $0.59 \mathrm{~g} / \mathrm{t}$ from 48 m incl. $1 \mathrm{~m} @ 1.8 \mathrm{~g} / \mathrm{t}, 5 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$, $2.2 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0104	RC	111	123	12	1.92	23.04	200	ZARC0104: 12 m at $1.92 \mathrm{~g} / \mathrm{t}$ from 111 m incl. 1 m @ $1.5 \mathrm{~g} / \mathrm{t}, 8.5 \mathrm{~g} / \mathrm{t}, 8.6 \mathrm{~g} / \mathrm{t}$, $1.1 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0045	RC	44	96	52	0.44	22.66	126	ZARC0045: 52 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 44 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	46	97	51	0.44	22.61	234	ZARC0047: 51 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 46 m incl. $1 \mathrm{~m} @ 5.2 \mathrm{~g} / \mathrm{t}, 2.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0121	RC	71	82	11	1.93	21.27	250	ZARC0121: 11 m at $1.93 \mathrm{~g} / \mathrm{t}$ from 71 m incl. $1 \mathrm{~m} @ 14.3 \mathrm{~g} / \mathrm{t}, 5.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZARC0037	RC	80	104	24	0.87	20.88	250	ZARC0037: 24 m at $0.87 \mathrm{~g} / \mathrm{t}$ from 80 m incl. 1 m @ $2.2 \mathrm{~g} / \mathrm{t}, 10.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0093	RC	77	109	32	0.58	18.43	109	ZARC0093: 32 m at $0.58 \mathrm{~g} / \mathrm{t}$ from 77 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	144	156	12	1.44	17.31	240	ZARC0069: 12 m at $1.44 \mathrm{~g} / \mathrm{t}$ from 144 m incl. $1 \mathrm{~m} @ 3.4 \mathrm{~g} / \mathrm{t}, 10.7 \mathrm{~g} / \mathrm{t}, 1$.	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	55	64	9	1.76	15.88	200	ZARC0101: 9 m at $1.76 \mathrm{~g} / \mathrm{t}$ from 55 m incl. 1 m @ $5 \mathrm{~g} / \mathrm{t}, 7.3 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	105	108	3	5.09	15.26	168	ZARC0051: 3 m at $5.09 \mathrm{~g} / \mathrm{t}$ from 105 m incl. 1 m @ $5.4 \mathrm{~g} / \mathrm{t}, 4.7 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0065	RC	208	215	7	2.13	14.94	215	ZARC0065: 7 m at $2.13 \mathrm{~g} / \mathrm{t}$ from 208 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	64	71	7	2.03	14.19	240	ZARC0069: 7 m at $2.03 \mathrm{~g} / \mathrm{t}$ from 64 m incl. 1 m @ $10 \mathrm{~g} / \mathrm{t}, 3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	126	132	6	2.30	13.83	240	ZARC0069: 6 m at $2.3 \mathrm{~g} / \mathrm{t}$ from 126 m incl. $1 \mathrm{~m} @ 1.8 \mathrm{~g} / \mathrm{t}, 2.3 \mathrm{~g} / \mathrm{t}, 8.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	20	31	11	1.19	13.06	200	ZARC0101: 11 m at $1.19 \mathrm{~g} / \mathrm{t}$ from 20 m incl. $1 \mathrm{~m} @ 7.6 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	63	68	5	2.59	12.96	243.15	ZADD0003: 5 m at 2.59g/t from 63 m incl. 1 m @ $10.3 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0053	RC	112	120	8	1.61	12.88	168	ZARC0053: 8 m at $1.61 \mathrm{~g} / \mathrm{t}$ from 112 m incl. $1 \mathrm{~m} @ 9.5 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	67	88	21	0.61	12.73	200	ZARC0031: 21 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 67 m incl. 1 m @ $1.5 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0068	RC	113	119	6	1.88	11.26	204	ZARC0068: 6 m at $1.88 \mathrm{~g} / \mathrm{t}$ from 113 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 2.7 \mathrm{~g} / \mathrm{t}, 5.7 \mathrm{~g} / \mathrm{t}$, $1.2 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Ehuasso	ZARC0121	RC	84	91	7	1.54	10.78	250	ZARC0121: 7 m at $1.54 \mathrm{~g} / \mathrm{t}$ from 84 m incl. $1 \mathrm{~m} @ 4.1 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 4.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0121	RC	234	242	8	1.29	10.32	250	ZARC0121: 8 m at $1.29 \mathrm{~g} / \mathrm{t}$ from 234 m incl. 1 m @ $4.5 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	84	104	20	0.51	10.17	200	ZARC0028: 20 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 84 m incl. $1 \mathrm{~m} @ 3.7 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	37	59	22	0.46	10.14	200	ZARC0031: 22 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0025	RC	192	195	3	3.35	10.06	200	ZARCOO25: 3 m at $3.35 \mathrm{~g} / \mathrm{t}$ from 192 m incl. 1 m @ $4.7 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	188	192	4	2.50	10.02		ZARC0104: 4 m at $2.5 \mathrm{~g} / \mathrm{t}$ from 188 m incl. 1 m @ $7.7 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{~m} \mathrm{c/o} 0.1$

Table 2: Newly reported drill intersection highlights over Mbasso, Coffee Bean, Yakasse, Ebilassokro and Coffee Bean at greater than 10 gram-metres for $1 \mathrm{~m} R C$ and $A C$ primary samples at a $0.1 \mathrm{~g} / \mathrm{t}$ cut-off and maximum 1 m of internal dilution.

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Mbasso	ZAAC0979	AC	39	43	4	18.96	75.84		ZAAC0979: 4 m at 18.96g/t from 39m incl. 1 m @ 1.7g/t	1m primary	1 mc co 0.1
Mbasso	ZAAC1112	AC	25	28	3	22.49	67.47	54	ZAAC1112: 3 m at $22.49 \mathrm{~g} / \mathrm{t}$ from 25 m incl. 1 m @ $62.9 \mathrm{~g} / \mathrm{t}, 4.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1026	AC	48	60	12	3.14	37.71	60	ZAAC1026: 12 m at $3.14 \mathrm{~g} / \mathrm{t}$ from 48 m incl. 1 m @ $2 \mathrm{~g} / \mathrm{t}, 34 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0904	AC	17	51	34	0.89	30.25	56	ZAAC0904: 34 m at $0.89 \mathrm{~g} / \mathrm{t}$ from 17 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$, $3.3 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t} 1 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}$	1m primary	1 mc co 0.1
Mbasso	ZAAC1039	AC	56	60	4	3.55	14.20	60	ZAAC1039: 4 m at $3.55 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ $13.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0842	AC	0	18	18	0.78	14.01	54	ZAAC0842: 18 m at $0.78 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.8 \mathrm{~g} / \mathrm{t}, 1.5 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$, $1.5 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0859	AC	48	53	5	2.46	12.29	57	ZAAC0859: 5 m at $2.46 \mathrm{~g} / \mathrm{t}$ from 48 m incl. 1 m @ $10.8 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0833	AC	5	17	12	1.01	12.11	66	ZAAC0833: 12 m at $1.01 \mathrm{~g} / \mathrm{t}$ from 5 m incl. $1 \mathrm{~m} @ 1.9 \mathrm{~g} / \mathrm{t}, 3.2 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$, $4.3 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0900	AC	1	22	21	0.55	11.51	22	ZAAC0900: 21 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 1 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0866	AC	16	40	24	0.47	11.18	42	ZAAC0866: 24 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 16 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0913	AC	9	24	15	0.74	11.17	24	ZAAC0913: 15 m at $0.74 \mathrm{~g} / \mathrm{t}$ from 9 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}$, $1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0818	AC	40	54	14	0.78	10.96	54	ZAAC0818: 14 m at $0.78 \mathrm{~g} / \mathrm{t}$ from 40 m incl. 1 m @ $4.5 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0825	AC	16	35	19	0.55	10.38	56	ZAAC0825: 19 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 16 m incl. $1 \mathrm{~m} @ 3 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1121	AC	40	54	14	0.73	10.28		ZAAC1121: 14 m at $0.73 \mathrm{~g} / \mathrm{t}$ from 40 m incl. $1 \mathrm{~m} @ 3.6 \mathrm{~g} / \mathrm{t}, 3.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0848	AC	0	27	27	0.37	10.00		ZAAC0848: 27 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 0 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0757	AC	32	40	8	8.54	68.28		ZAAC0757: 8 m at $8.54 \mathrm{~g} / \mathrm{t}$ from 32 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}, 7.1 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}, 11.3 \mathrm{~g} / \mathrm{t}$, $38.1 \mathrm{~g} / \mathrm{t}, 9.2 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0763	AC	5	11	6	10.38	62.25	54	ZAAC0763: 6 m at $10.38 \mathrm{~g} / \mathrm{t}$ from 5 m incl. 1 m @ $60.8 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0682	AC	19	29	10	3.26	32.64		ZAAC0682: 10 m at $3.26 \mathrm{~g} / \mathrm{t}$ from 19 m incl. $1 \mathrm{~m} @ 8.9 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}$, $8.3 \mathrm{~g} / \mathrm{t}, 4.7 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0676	AC	56	65	9	1.21	10.86		ZAAC0676: 9 m at $1.21 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ $5.8 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0100	RC	127	146	19	7.11	135.13	204	ZARC0100: 19 m at $7.11 \mathrm{~g} / \mathrm{t}$ from 127 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}, 6.3 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$, $2.5 \mathrm{~g} / \mathrm{t}, 4.3 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}, 19.7 \mathrm{~g} / \mathrm{t}, 54.9 \mathrm{~g} / \mathrm{t}, 28.1 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 9.4 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	70	82	12	1.58	18.93		ZARC0096: 12 m at $1.58 \mathrm{~g} / \mathrm{t}$ from 70 m incl. 1 m @ $16.7 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0632	AC	37	42	5	2.99	14.95		ZAAC0632: 5 m at $2.99 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 11.6 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0788	AC	18	37	19	2.82	53.56	63	ZAAC0788: 19 m at $2.82 \mathrm{~g} / \mathrm{t}$ from 18 m incl. 1 m @ $3.3 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}, 36 \mathrm{~g} / \mathrm{t}$, $2.4 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}$	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0783	AC	17	24	7	6.33	44.30		ZAAC0783: 7 m at $6.33 \mathrm{~g} / \mathrm{t}$ from 17 m incl. $1 \mathrm{~m} @ 38.2 \mathrm{~g} / \mathrm{t}, 5.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0791	AC	60	63	3	3.55	10.66		ZAAC0791: 3 m at $3.55 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{~m} \mathrm{c/o} 0.1$

Figure 4: Mbasso-Coffee Bean-Ehuasso target zones with $1 m$ primary drilling result highlights at greater than 10 gram-metres (gxm) with Total Magnetic Intensity aeromagnetics image background, village locations in black hatching and main drainages in blue.

New drilling results confirm previously reported 4 m composite intervals across the target areas. The Mbasso-Coffee Bean-Ehuasso targets cover a combined strike of 8 km , centralised over the Coffee Bean magnetic anomaly, with high-grade drilling results to date following structures visible within the aeromagnetics data (refer Figure 1).

A further $1,266 \mathrm{~m}$ of DD drilling in 6 holes was completed within the central Mbasso-Coffee Bean-Ehuasso target zone to test mineralisation continuity in low-lying wet areas not accessible by RC and depth extensions. Highlight drill intersections greater than 5 gxm include:

- ZADD0004: 23.6m at $0.9 \mathrm{~g} / \mathrm{t}$ from 102.4 m incl. $0.62 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 0.88 \mathrm{~m} @ 1.9 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~m} @ 9.85 \mathrm{~g} / \mathrm{t}, 0.7 \mathrm{~m} @ 2.5 \mathrm{~g} / \mathrm{t}$
- ZADD0007: 1 m at $17.9 \mathrm{~g} / \mathrm{t}$ from 127.85 m
- ZADD0004: 16 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 135 m incl. $0.4 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 0.63 \mathrm{~m} @ 2.6 \mathrm{~g} / \mathrm{t}, 0.5 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$
- ZADD0009: 17.5m at $0.4 \mathrm{~g} / \mathrm{t}$ from 53.8 m incl. 1 m @ $1.3 \mathrm{~g} / \mathrm{t}$
- ZADD0006: 3 m at $1.7 \mathrm{~g} / \mathrm{t}$ from 82.92 m incl. $1.08 \mathrm{~m} @ 4.4 \mathrm{~g} / \mathrm{t}$
- ZADD0007: 1.8 m at $2.9 \mathrm{~g} / \mathrm{t}$ from 124.6 m incl. $0.35 \mathrm{~m} @ 13.7 \mathrm{~g} / \mathrm{t}$

The Company is reviewing the drilling results and considering next steps. The Company is also reviewing new exploration targets, which occur along a 47 km striking shear structure along the length of the Zaranou license. Regional soils confirmed prospectivity along the structure and key target areas.

Vavoua Portfolio:

The Company has completed 4,860 regional auger holes for a total of c. 34,000m over the two northern Vavoua licenses since the tenements were granted and field work commenced. Auger drilling remains ongoing. A total of approximately $8,640 \mathrm{~m}$ in 1,270 auger holes on a nominal $400 \mathrm{~m} \times 25 \mathrm{~m}$ infill grid was completed during the reporting period within the Vavoua North and Vavoua South licenses. The programme targeted geophysical anomalies defined from the aeromagnetics survey and along strike from the 3.35Moz Abujar Project (JORC compliant, held by a third party). Auger drilling has defined multiple targets, including a high priority 8 km long +10 ppb to 50 ppb soil anomaly located along the same structure that is interpreted to host the 3.35 Moz Abujar deposit (refer Figure 5).

RICCA
RESOURCES

An 8,500m first phase reconnaissance AC drilling programme has commenced within the high-priority central auger anomaly and other satellite auger anomalies to test at depth. Concurrently, a $2,200 \mathrm{~m}$ in 368 holes auger programme has commenced to infill the open area between previous auger drilling grids. Drilling remains ongoing (refer Figure 5).

Regional soil sampling and reconnaissance mapping was completed over the Gboghue license directly south of the Vavoua licenses. A total of 6,959 soil samples were collected and assayed on a nominal $800 \mathrm{~m} \times 50 \mathrm{~m}$ grid along structures interpreted from the aeromagnetics survey. Despite some scattered spot highs, no significant soil anomalies were reported. The Company is currently reviewing next steps.

Figure 5: Vavoua North and Vavoua South license defined auger anomalies adjacent to the 3.35Moz Abujar deposit with followup auger and AC drilling programme currently underway.

Kineta Portfolio:

The Kineta South and Bouna permit (both along strike from the Kineta Nth and Marahui permits; collectively the Kineta Portfolio) were granted during the reporting period. The portfolio consists of $1,437 \mathrm{~km}^{2}$ granted tenure along the prospective Wa-Lawra shear zone, which hosts the 3.3 Moz Konkera deposit to the north in Burkina Faso and 2.1Moz Wa-Lawra deposit to the north-east in Ghana (refer Figure 1).

Subsequent to the reporting of $1,590 \mathrm{~m}$ of trenching results (refer Atlantic Lithium Limited's Financial Statements for the year ended 30 June 2021), including 12.6 m at $1.49 \mathrm{~g} / \mathrm{t}$, including 7 m at $2.45 \mathrm{~g} / \mathrm{t}$, in trench MTR0005 and 10 m at $0.37 \mathrm{~g} / \mathrm{t}$, including 2 m at $0.94 \mathrm{~g} / \mathrm{t}$, in trench MTR0001 at the Marahui license, a further 2,002m of close spaced auger drilling was completed in 549 holes of close spaced auger traverses in-lieu of follow-up trenching. This is to minimise ground disturbance within a cashew farming area.

Auger drilling assay results returned anomalous results, including highlights of $4 \mathrm{~m} @ 3.98 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 3 \mathrm{~m} @ 1.67 \mathrm{~g} / \mathrm{t}$ and $4 \mathrm{~m} @ 1.27$ g/t. (refer to Figure 6) with trench intersections highlighted in Figure 7.

Figure 6: Marahui close spaced highlight auger drill intersections in Trench MTR0005 (refer to Figure 7 below for overall trench intersections).

Figure 7: Marahui reconnaissance trenching intersections and key anomalous zones defined.

Reconnaissance field mapping and rock chip sampling was completed over the newly granted Kineta South license, where hardrock artisanal mining sites were recorded along strike from the Kineta North workings. Assay results are pending.

CHAD

In Chad, the Company holds $746.25 \mathrm{~km}^{2}$ of tenure prospective for Intrusion Related Gold ("IRG") systems at the Dorothe, Kalaka, Nabagay, Echbara and Am Ouchar licenses. The Company has defined a significant gold target at Dorothe in approximately 15 km of trenching at 200 m spacing over a $3 \mathrm{~km} \times 1 \mathrm{~km}$ surface area. Additional gold targets have been identified within the Echbara, Am Ouchar, Kalaka and Nabagay licenses (refer Figure 8).

Figure 8: Chad tenure over regional road network and location map (insert).

At the Dorothe target, six coherent, large-scale, high-priority gold anomalies have been defined in trenching within the steep east dipping 'Main Vein' target and shallow west dipping 'Sheeted Vein' targets with multiple broad, high-grade trenching intersections at a $0.4 \mathrm{~g} / \mathrm{t}$ gold cut-off and maximum 4 m dilution, including highlights of 84 m at $1.66 \mathrm{~g} / \mathrm{t}, 4 \mathrm{~m}$ at $18.77 \mathrm{~g} / \mathrm{t}, 32 \mathrm{~m}$ at $2.02 \mathrm{~g} / \mathrm{t}, 24 \mathrm{~m}$ at $2.53 \mathrm{~g} / \mathrm{t}, 12 \mathrm{~m}$ at $2.32 \mathrm{~g} / \mathrm{t}$ and 4 m at $5.27 \mathrm{~g} / \mathrm{t}$ gold.

Assay results were received for mapping and rock chip sampling completed at the Wandalou prospect within the Nabagay license during the 2021 field season. The objective of the programme was to follow up on previous rock-chip and soil sampling anomalies at Nabagay, with five prospects targeted. A total of 136 rock chip samples and 1017 soil samples were collected. All the soil samples were sieved to <75 micron and the rock chips pulverised to <75 microns at the Company's preparation laboratory in N'Djamena and sent to ALS Ireland for assay. Results passed internal QA/QC checks providing confidence in reported results. Only rock-chip samples were submitted for assay with soils to follow post positive results.

Multiple high-grade rock-chip assay results were received at Wandalou, including $243 \mathrm{~g} / \mathrm{t}, 34.1 \mathrm{~g} / \mathrm{t}$ and $6.11 \mathrm{~g} / \mathrm{t}$ gold associated with milky white and grey deformed to mylonitic quartz veins up to 0.5 m thick and over 200 m strike trending in an $\mathrm{E}-\mathrm{W}$ orientation.

The portfolio is interpreted to represent an unexplored IRG system and potential analogue of the Tintina Gold Belt in Alaska-Yukon with notable deposits including Donlin Creek (Barrick / Novagold, >45Moz), Fork Knox (Kinross, ~10Moz), Pogo (NST, ~10Moz) and Dublin Gulch (Victoria Gold Corp., >3Moz).

The Company has engaged a drilling contractor and is currently mobilising an RC rig from South Africa to complete a $7,500 \mathrm{~m}$ reconnaissance drilling programme planned to be completed in 2022. Field teams have started to mobilise back to the site to establish field camps and logistics ahead of the planned programme.

Appendix 1: Final Third phase 1 m primary $A C, R C$ and $D D$ drill intersections reported at a $0.1 \mathrm{~g} / \mathrm{t}$ cutoff and maximum 1 m of internal dilution

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Ehuasso	ZARC0023	RC	0	4	4	0.14	0.57	192	ZARC0023:	4 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0023	RC	28	32	4	0.81	3.23	192	ZARC0023:	4 m at $0.81 \mathrm{~g} / \mathrm{t}$ from 28 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0023	RC	108	112	4	0.33	1.33	192	ZARC0023:	4 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 108 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0023	RC	141	142	1	0.12	0.12	192	ZARC0023:	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 141 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0023	RC	149	155	6	0.64	3.85	192	ZARC0023: 6	6 m at $0.64 \mathrm{~g} / \mathrm{t}$ from 149 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0024	RC	62	70	8	0.33	2.60	200 Z	ZARC0024: 8	8 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 62 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0024	RC	88	92	4	0.33	1.33	200 Z	ZARCOO24:	4 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0024	RC	161	162	1	0.11	0.11	200 Z	ZARC0024:	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 161 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0025	RC	4	7	3	1.68	5.03	200 Z	ZARC0025:	3 m at $1.68 \mathrm{~g} / \mathrm{t}$ from 4 m incl. $1 \mathrm{~m} @ 4.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0025	RC	110	136	26	0.94	24.53	200 Z	ZARC0025:	26 m at $0.94 \mathrm{~g} / \mathrm{t}$ from 110 m incl. 1 m @ $6.6 \mathrm{~g} / \mathrm{t}, 7.6 \mathrm{~g} / \mathrm{t}, 4.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0025	RC	177	180	3	0.69	2.07	200 Z	ZARC0025:	3 m at $0.69 \mathrm{~g} / \mathrm{t}$ from 177 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0025	RC	192	195	3	3.35	10.06	200	ZARC0025:	3m at $3.35 \mathrm{~g} / \mathrm{t}$ from 192 m incl. 1 m @ $4.7 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	13	16	3	0.76	2.27	200 Z	ZARC0026:	3 m at $0.76 \mathrm{~g} / \mathrm{t}$ from 13 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	21	25	4	0.53	2.11	200 Z	ZARC0026:	4 m at $0.53 \mathrm{~g} / \mathrm{t}$ from 21 m incl. 1 m @ 1.5g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	27	28	1	0.13	0.13	200 Z	ZARC0026:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 27 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	111	113	2	2.62	5.23	200	ZARC0026:	2 m at $2.62 \mathrm{~g} / \mathrm{t}$ from 111 m incl. 1 m @ $1.3 \mathrm{~g} / \mathrm{t}, 3.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	119	123	4	0.17	0.69	200 Z	ZARC0026:	4 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 119 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0026	RC	178	179	1	0.13	0.13	200	ZARC0026:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 178 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0027	RC	48	59	11	0.34	3.78	200 Z	ZARC0027:	11m at $0.34 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0027	RC	61	63	2	0.15	0.30	200	ZARC0027:	2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 61 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0027	RC	65	69	4	0.24	0.95	200 Z	ZARC0027:	4 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 65 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0027	RC	71	76	5	4.82	24.08	200 Z	ZARC0027:	5m at $4.82 \mathrm{~g} / \mathrm{t}$ from 71 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}, 19.5 \mathrm{~g} / \mathrm{t}, 2.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	73	74	1	0.16	0.16	200 Z	ZARC0028:	1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 73m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	76	82	6	0.17	1.01	200	ZARC0028:	6 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	84	104	20	0.51	10.17	200 Z	ZARC0028:	20 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 84 m incl. $1 \mathrm{~m} @ 3.7 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	107	113	6	0.59	3.54	200 Z	ZARC0028:	6 m at 0.59g/t from 107 m incl. 1 m @ 1.7g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	116	124	8	0.18	1.43	200 Z	ZARC0028:	8 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 116 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	137	138	1	0.47	0.47	200 Z	ZARC0028:	1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 137 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	140	150	10	0.23	2.29	200 Z	ZARC0028:	10m at $0.23 \mathrm{~g} / \mathrm{t}$ from 140 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	153	154	1	0.49	0.49	200 Z	ZARC0028:	1 m at $0.49 \mathrm{~g} / \mathrm{t}$ from 153 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	163	164	1	0.13	0.13		ZARC0028:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 163 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	168	169	1	0.12	0.12	200 Z	ZARC0028:	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 168 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	171	175	4	0.24	0.95	200	ZARC0028:	4 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 171 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0028	RC	177	180	3	0.34	1.02	200 Z	ZARC0028:	3 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 177 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	0	10	10	0.70	6.96	204	ZARC0029:	10 m at $0.7 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	37	67	30	1.37	41.14	204	ZARC0029:	30 m at $1.37 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 7.4 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}, 4.5 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}, 4$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	69	71	2	0.17	0.34	204	ZARC0029:	2 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 69 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	77	78	1	0.10	0.10	204	ZARC0029:	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 77 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	84	86	2	0.15	0.29	204	ZARC0029:	2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 84 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	88	90	2	0.17	0.35	204	ZARC0029:	2 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0029	RC	108	109	1	0.14	0.14	204	ZARC0029:	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 108 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	0	8	8	0.22	1.74	180	ZARC0030:	8 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	10	11	1	0.12	0.12	180	ZARC0030:	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	15	16	1	0.23	0.23	180	ZARC0030:	1 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	24	26	2	0.24	0.48	180	ZARC0030:	2 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 24 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	49	53	4	0.27	1.08	180	ZARC0030:	4 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 49 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	69	80	11	0.46	5.11	180	ZARC0030:	11 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 69 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0030	RC	177	179	2	3.94	7.88	180	ZARC0030:	2 m at $3.94 \mathrm{~g} / \mathrm{t}$ from 177 m incl. 1 m @ 7.8g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	0	7	7	0.93	6.51	200 Z	ZARC0031:	7m at 0.93g/t from Om incl. $1 \mathrm{~m} @ 2.4 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	37	59	22	0.46	10.14	200	ZARC0031:	22 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	67	88	21	0.61	12.73	200	ZARC0031:	21 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 67 m incl. $1 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	90	91	1	0.12	0.12	200	ZARC0031:	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 90 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0031	RC	112	114	2	2.42	4.83	200 Z	ZARC0031:	2 m at $2.42 \mathrm{~g} / \mathrm{t}$ from 112 m incl. 1 m @ $4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0032	RC	0	64	64	0.47	30.22	129	ZARC0032:	. 64 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}, 8.6 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0032	RC	125	126	1	0.56	0.56	129	ZARC0032:	1 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 125 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0033	RC	48	88	40	0.59	23.44	124	ZARC0033:	. 40 m at $0.59 \mathrm{~g} / \mathrm{t}$ from 48 m incl. $1 \mathrm{~m} @ 1.8 \mathrm{~g} / \mathrm{t}, 5 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 2.2 ¢ 1$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0034	RC	78	91	13	0.28	3.64		ZARC0034:	13 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 78 m incl. 1 m @ $1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0034	RC	95	97	2	0.13	0.27		ZARC0034:	2 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 95 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0034	RC	103	104	1	0.21	0.21	201	ZARC0034:	1 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 103 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0034	RC	108	111	3	0.41	1.22	201	ZARC0034:	3 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 108 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0035	RC	105	115	10	0.56	5.62		ZARC0035:	10 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 105 m incl. $1 \mathrm{~m} @ 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	28	45	17	1.45	24.72		ZARC0036:	17 m at $1.45 \mathrm{~g} / \mathrm{t}$ from 28 m incl. $1 \mathrm{~m} @ 15.5 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 1.1$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	48	49	1	0.11	0.11		ZARC0036:	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	50	51	1	0.10	0.10	201	ZARC0036:	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	57	59	2	0.14	0.29		ZARC0036:	2 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 57 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0036	RC	138	140	2	1.26	2.52		ZARC0036:	2 m at $1.26 \mathrm{~g} / \mathrm{t}$ from 138 m incl. 1 m @ 1.9g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	4	8	4	0.15	0.61	250	ZARC0037:	4m at $0.15 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	12	16	4	0.48	1.92	250	ZARC0037:	. 4 m at 0.48g/t from 12 mincl .1 m @ 1.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	73	76	3	0.20	0.61	250	ZARC0037:	3m at $0.2 \mathrm{~g} / \mathrm{t}$ from 73 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	80	104	24	0.87	20.88	250	ZARC0037:	24m at 0.87g/t from 80 m incl. 1 m @ $2.2 \mathrm{~g} / \mathrm{t}, 10.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	120	121	1	0.17	0.17	250	ZARC0037:	1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 120 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0037	RC	236	239	3	1.52	4.55	250	ZARC0037:	3m at $1.52 \mathrm{~g} / \mathrm{t}$ from 236 m incl. 1 m @ $2.6 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0038	RC	2	4	2	0.25	0.51		ZARC0038:	2 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0038	RC	9	16	7	0.65	4.55		ZARC0038:	7 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 9 m incl. $1 \mathrm{~m} @ 2.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0038	RC	40	42	2	0.28	0.55		ZARC0038:	2 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0038	RC	57	60	3	0.36	1.09		ZARC0038:	3 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 57 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0039	RC	0		3	0.19	0.57		ZARC0039:	3 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0039	RC	32	40	8	0.46	3.70		ZARC0039:	8 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 32 m incl. 1 m @ 1.8g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZARC0040	RC	8	15	7	0.24	1.68		ZARCOO40: 7 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 8 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0040	RC	17	28	11	0.22	2.45	200 Z	ZARC0040: 11 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0040	RC	58	60	2	0.30	0.61	200 Z	ZARCOO40: 2 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 58m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0040	RC	76	78	2	0.21	0.42	200 ZAR	ZARCOO40: 2 m at 0.21g/t from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0040	RC	102	104	2	3.03	6.06	200	ZARC0040: 2 m at $3.03 \mathrm{~g} / \mathrm{t}$ from 102 m incl. $1 \mathrm{~m} @ 3.7 \mathrm{~g} / \mathrm{t}$, 2.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0040	RC	106	108	2	2.45	4.91	200 Z	ZARC0040: 2 m at $2.45 \mathrm{~g} / \mathrm{t}$ from 106 m incl. 1 m @ 3.5g/t, 1.41	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0041	RC	45	50	5	0.92	4.61	60	ZARC0041: 5 m at 0.92g/t from 45 m incl. 1 m @ 3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0042	RC	148	149	1	0.33	0.33	204	ZARC0042: 1 m at 0.33g/t from 148 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0042	RC	151	153	2	0.93	1.85	204	ZARC0042: 2 m at 0.93g/t from 151 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	40	55	15	0.45	6.74	116	ZARC0043: 15 m at $0.45 \mathrm{~g} / \mathrm{t}$ from 40 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	60	68	8	0.22	1.73	116	ZARC0043: 8 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	77	80	3	0.52	1.56	116	ZARC0043: 3 m at $0.52 \mathrm{~g} / \mathrm{t}$ from 77m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	96	99	3	0.94	2.81		ZARCO043: 3 m at $0.94 \mathrm{~g} /$ t from 96 m incl. $1 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	102	104	2	1.47	2.94	116	ZARCOO43: 2 m at 1.47g/t from 102 m incl. 1 m @ $2.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0043	RC	111	114	3	0.12	0.36		ZARC0043: 3 m at 0.12g/t from 111m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0044	RC	0	8	8	0.35	2.79		ZARCOO44: 8 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0044	RC	12	15	3	0.16	0.47		ZARCO044: 3 m at 0.16g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0044	RC	36	38	2	0.12	0.25	151	ZARCO044: 2 m at 0.12g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0044	RC	121	122	1	0.23	0.23		ZARC0044: 1 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 121 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0045	RC	24	32	8	0.17	1.38	126	ZARCOO45: 8 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 24 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0045	RC	44	96	52	0.44	22.66	126	ZARC0045: 52 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 44 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0045	RC	100	102	2	0.13	0.26	126	ZARC0045: 2 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 100 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0046	RC	5	8	3	0.17	0.52	150	ZARC0046: 3 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 5 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0046	RC	16	23	7	0.18	1.27	150	ZARCO046: 7 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0046	RC	60	62	2	0.14	0.29	150	ZARCO046: 2 m at 0.14g/t from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0046	RC	111	120	9	5.94	53.42	150	ZARCOO46: 9 m at $5.94 \mathrm{~g} / \mathrm{t}$ from 111m incl. $1 \mathrm{~m} @ 8.5 \mathrm{~g} / \mathrm{t}, 37.1 \mathrm{~g} / \mathrm{t}, 2.3 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	0	4	4	0.14	0.54	234	ZARCOO47: 4 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0047	RC	21	24	3	0.11	0.34	234	ZARC0047: 3 m at 0.11g/t from 21m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	40	44	4	0.12	0.49	234	ZARCO047: 4 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	46	97	51	0.44	22.61	234	ZARC0047: 51 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 46 m incl. $1 \mathrm{~m} @ 5.2 \mathrm{~g} / \mathrm{t}, 2.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	106	111	5	0.27	1.36	234	ZARC0047: 5 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 106 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0047	RC	121	124	3	0.10	0.31	234	ZARCO047: 3 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 121m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0048	RC	12	13	1	0.15	0.15	200	ZARCO048: 1 m at 0.15g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0048	RC	87	89	2	1.32	2.64	200 Z	ZARCOO48: 2 m at $1.32 \mathrm{~g} / \mathrm{t}$ from 87 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0048	RC	157	160	3	1.59	4.77	200 ZAR	ZARC0048: 3 m at $1.59 \mathrm{~g} /$ t from 157 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}, 2.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	76	77	1	0.12	0.12	126	ZARCO049: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	79	80	1	0.17	0.17		ZARCOO49: 1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 79m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	89	90	1	0.12	0.12	126	ZARCO049: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 89 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	91	92	1	0.11	0.11		ZARC0049: 1 m at 0.11g/t from 91m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	109	111	2	1.21	2.42		ZARC0049: 2 m at $1.21 \mathrm{~g} /$ t from 109 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0049	RC	115	116	1	0.36	0.36		ZARC0049: 1 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 115m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	17	21	4	0.11	0.43		ZARCO050: 4 m at 0.11g/t from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCOO50	RC	25	26	1	0.47	0.47		ZARCOO5O: 1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	28	32	4	1.15	4.62		ZARCOO50: 4 m at $1.15 \mathrm{~g} / \mathrm{t}$ from 28 m incl. 1 m @ 3.9g/t	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0050	RC	34	35	1	0.15	0.15		ZARCO050: 1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	37	39	2	0.19	0.39		ZARCOO50: 2 m at 0.19g/t from 37m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	51	53	2	0.28	0.55		ZARCOO50: 2 m at 0.28g/t from 51m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCOO50	RC	60	65	5	0.82	4.11		ZARCOO50: 5 m at $0.82 \mathrm{~g} /$ t from 60 m incl. 1 m @ $2.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	71	76	5	1.20	6.01		ZARCOO50: 5 m at $1.2 \mathrm{~g} / \mathrm{t}$ from $71 \mathrm{mincl} .1 \mathrm{~m} @ 3.7 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	78	80	2	3.33	6.66		ZARCOO50: 2 m at $3.33 \mathrm{~g} / \mathrm{t}$ from 78 m incl. $1 \mathrm{~m} @ 5.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0050	RC	142	148	6	0.42	2.54		ZARC0050: 6 m at $0.42 \mathrm{~g} / \mathrm{t}$ from 142 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0051	RC	40	54	14	0.28	3.93		ZARC0051: 14 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	61	74	13	0.17	2.16	168	ZARC0051: 13 m at 0.17g/t from 61 m incl. 1 m @ $2.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0051	RC	76	78	2	1.34	2.67	168	ZARC0051: 2 m at 1.34g/t from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	96	97	1	0.19	0.19	168	ZARC0051: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 96 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	99	102	3	0.69	2.08	168	ZARC0051: 3 m at 0.69g/t from 99m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	105	108	3	5.09	15.26		ZARC0051: 3 m at $5.09 \mathrm{~g} / \mathrm{t}$ from 105 m incl. $1 \mathrm{~m} @ 5.4 \mathrm{~g} / \mathrm{t}, 4.7 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	133	135	2	0.79	1.59	168	ZARCOO51: 2 m at $0.79 \mathrm{~g} / \mathrm{t}$ from 133 m incl. 1 m @ 1.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	150	151	1	0.60	0.60		ZARC0051: 1 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 150 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0051	RC	158	168	10	0.49	4.85	168	ZARCOO51: 10 m at $0.49 \mathrm{~g} / \mathrm{t}$ from 158 m incl. 1 m @ $1.3 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	0	8	8	0.12	0.94		ZARC0052: 8 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	26	31	5	0.58	2.91		ZARCOO52: 5 m at $0.58 \mathrm{~g} / \mathrm{t}$ from 26 m incl. $1 \mathrm{~m} @ 2.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	39	42	3	0.77	2.32		ZARCOO52: 3 m at 0.77g/t from 39 m incl. 1 m @ $2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	112	117	5	1.52	7.58	204	ZARC0052: 5 m at $1.52 \mathrm{~g} /$ t from 112 m incl. $1 \mathrm{~m} @ 3.1 \mathrm{~g} / \mathrm{t}, 4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	159	171	12	0.44	5.24		ZARCOO52: 12 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 159 m incl. 1 m @ 1.7g/t,	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0052	RC	173	174	1	1.28	1.28	204	ZARC0052: 1 m at $1.28 \mathrm{~g} / \mathrm{t}$ from 173m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0053	RC	72	82	10	0.18	1.79		ZARC0053: 10 m at 0.18g/t from 72 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0053	RC	85	91	6	0.30	1.82	168	ZARCOO53: 6 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 85 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0053	RC	98	99	1	1.02	1.02		ZARC0053: 1 m at 1.02g/t from 98m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0053	RC	102	104	2	0.24	0.48		ZARC0053: 2 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 102 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0053	RC	112	120	8	1.61	12.88	168	ZARC0053: 8 m at $1.61 \mathrm{~g} / \mathrm{t}$ from 112 m incl. $1 \mathrm{~m} @ 9.5 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	0	4	4	0.33	1.32		ZARCOO54: 4 m at 0.33g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	48	49	1	0.10	0.10	200 Z	ZARC0054: 1 m at 0.1g/t from 48m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	60	62	2	0.45	0.91		ZARC0054: 2 m at $0.45 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	97	99	2	0.12	0.24	200 Z	ZARCOO54: 2 m at 0.12g/t from 97m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	108	109	1	0.25	0.25	200 ZAR	ZARC0054: 1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 108 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	132	134	2	0.55	1.11	200	ZARC0054: 2 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 132 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0054	RC	146	147	1	0.10	0.10		ZARCO054: 1 m at 0.1g/t from 146 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0055	RC	1	4	3	0.16	0.47	192	ZARC0055: 3 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0055	RC	6	7	1	0.69	0.69		ZARCO055: 1 m at $0.69 \mathrm{~g} /$ t from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZARC0055	RC	80	81	1	0.39	0.39		ZARCO055: 1 m at $0.39 \mathrm{~g} / \mathrm{t}$ from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0055	RC	83	86	3	0.35	1.05	192	ZARCOO55: 3 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 83 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0055	RC	88	89	1	0.33	0.33	192	ZARCOO55: 1 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0055	RC	100	106	6	0.21	1.25	192	ZARC0055: 6 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 100 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0055	RC	177	178	1	0.25	0.25	192	ZARC0055: 1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 177 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0055	RC	180	184	4	0.12	0.48	192	ZARC0055: 4 m at 0.12g/t from 180m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	42	43	1	0.17	0.17	204	ZARC0056: 1 m at 0.17g/t from 42m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	80	96	16	0.39	6.19		ZARCOO56: 16 m at 0.39g/t from 80 m incl. 1 m @ $2.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	98	99	1	0.12	0.12	204	ZARC0056: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 98 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	155	156	1	0.13	0.13	204	ZARC0056: 1 m at 0.13g/t from 155m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	158	165	7	0.62	4.35	204	ZARC0056: 7 m at $0.62 \mathrm{~g} / \mathrm{t}$ from 158 m incl. 1 m @ 1.7g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0056	RC	197	198	1	0.27	0.27	204	ZARC0056: 1 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 197m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	0	8	8	0.43	3.42	240 Z	ZARCOO57: 8 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 0 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	51	52	1	3.52	3.52	240 Z	ZARC0057: 1 m at $3.52 \mathrm{~g} / \mathrm{t}$ from 51m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	84	89	5	1.59	7.93	240	ZARC0057: 5 m at $1.59 \mathrm{~g} / \mathrm{t}$ from 84 m incl. 1 m @ $3.5 \mathrm{~g} / \mathrm{t}, 2.3 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	94	99	5	0.20	0.98	240 Z	ZARCO057: 5 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 94 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	101	104	3	0.31	0.92	240 Z	ZARC0057: 3 m at 0.31g/t from 101m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0057	RC	168	169	1	0.16	0.16	240	ZARC0057: 1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 168 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	42	44	2	0.47	0.94	202	ZARC0058: 2 m at 0.47g/t from 42m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	52	56	4	0.18	0.74	202	ZARC0058: 4 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	60	62	2	0.41	0.82	202	ZARC0058: 2 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	73	74	1	0.38	0.38	202	ZARC0058: 1 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 73m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	102	104	2	0.55	1.10	202	ZARC0058: 2 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 102 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	112	114	2	0.65	1.29	202	ZARCO058: 2 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 112 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	126	128	2	0.13	0.26	202	ZARC0058: 2 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 126 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	135	137	2	0.58	1.15		ZARC0058: 2 m at 0.58g/t from 135 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0058	RC	143	144	1	0.91	0.91	202	ZARC0058: 1 m at 0.91g/t from 143m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0058	RC	160	164	4	0.28	1.12	202	ZARC0058: 4 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 160 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0060	RC	60	64	4	0.15	0.61	100	ZARCO060: 4 m at 0.15g/t from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0060	RC	82	83	1	0.74	0.74	100	ZARC0060: 1 m at 0.74g/t from 82 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCOO62	RC	101	104	3	0.37	1.10	180	ZARC0062: 3 m at 0.37g/t from 101 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0062	RC	108	112	4	1.74	6.94	180	ZARC0062: 4 m at $1.74 \mathrm{~g} / \mathrm{t}$ from 108 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}, 4.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	0	4	4	0.21	0.85	260	ZARC0063: 4 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	48	51	3	0.18	0.53	260	ZARC0063: 3 m at 0.18g/t from 48m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	61	68	7	0.18	1.25	260 Z	ZARC0063: 7 m at 0.18g/t from 61 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	80	83	3	0.35	1.05	260 Z	ZARC0063: 3 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	144	146	2	1.33	2.67	260	ZARCO063: 2 m at 1.33g/t from 144 m incl. 1 m @ 1.8g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0063	RC	148	152	4	1.01	4.05	260	ZARC0063: 4 m at 1.01g/t from 148 m incl. 1 m @ $2.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	0	7	7	0.29	2.02		ZARC0064: 7 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	10	11	1	0.18	0.18	204	ZARC0064: 1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	13	14	1	0.24	0.24		ZARC0064: 1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	16	20	4	0.34	1.37	204	ZARCOO64: 4 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	31	32	1	0.13	0.13	204	ZARC0064: 1 m at 0.13g/t from 31 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0064	RC	36	38	2	2.52	5.04	204	ZARCOO64: 2 m at $2.52 \mathrm{~g} /$ t from 36 m incl. 1 m @ $2 \mathrm{~g} / \mathrm{t}, 3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0065	RC	25	26	1	0.38	0.38	215	ZARC0065: 1 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	28	34	6	0.16	0.98	215	ZARCO065: 6 m at 0.16g/t from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	36	37	1	0.12	0.12	215	ZARC0065: 1 m at 0.12g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	39	40	1	1.12	1.12		ZARC0065: 1 m at 1.12g/t from 39m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	42	52	10	0.84	8.38		ZARC0065: 10 m at $0.84 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	117	124	7	0.66	4.65		ZARC0065: 7 m at $0.66 \mathrm{~g} / \mathrm{t}$ from 117 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0065	RC	192	206	14	0.66	9.25		ZARC0065: 14 m at $0.66 \mathrm{~g} / \mathrm{t}$ from 192m	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0065	RC	208	215	7	2.13	14.94		ZARC0065: 7 m at $2.13 \mathrm{~g} / \mathrm{t}$ from 208 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0066	RC	40	41	1	1.07	1.07	200	ZARC0066: 1 m at $1.07 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0066	RC	80	82	2	0.22	0.44	200 Z	ZARC0066: 2 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	0	1	1	0.14	0.14	228	ZARC0067: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	16	20	4	0.22	0.88	228	ZARC0067: 4 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	73	74	1	1.90	1.90	228	ZARC0067: 1 m at $1.9 \mathrm{~g} / \mathrm{t}$ from 73m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	79	86	7	5.35	37.44	228	ZARCO067: 7 m at $5.35 \mathrm{~g} /$ t from 79 m incl. $1 \mathrm{~m} @ 3 \mathrm{~g} / \mathrm{t}, 13.6 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 15$.	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	106	107	1	3.29	3.29	228 ZAR	ZARC0067: 1 m at $3.29 \mathrm{~g} / \mathrm{t}$ from 106 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	158	161	3	0.19	0.58	228	ZARC0067: 3 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 158m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	163	164	1	0.29	0.29		ZARC0067: 1 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 163m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	166	170	4	0.18	0.71	228	ZARC0067: 4 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 166 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0067	RC	176	177	1	0.13	0.13		ZARC0067: 1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 176 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0068	RC	113	119	6	1.88	11.26		ZARCO068: 6 m at $1.88 \mathrm{~g} / \mathrm{t}$ from 113 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 2.7 \mathrm{~g} / \mathrm{t}, 5.7 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	20	26	6	0.41	2.49	240	ZARC0069: 6 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 20 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	44	48	4	0.18	0.73	240	ZARC0069: 4 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	64	71	7	2.03	14.19	240 Z	ZARC0069: 7 m at $2.03 \mathrm{~g} / \mathrm{t}$ from 64 m incl. $1 \mathrm{~m} @ 10 \mathrm{~g} / \mathrm{t}, 3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	126	132	6	2.30	13.83	240 Z	ZARC0069: 6 m at $2.3 \mathrm{~g} / \mathrm{t}$ from 126 m incl. 1 m @ $1.8 \mathrm{~g} / \mathrm{t}, 2.3 \mathrm{~g} / \mathrm{t}, 8.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	135	136	1	0.14	0.14	240	ZARC0069: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 135 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	144	156	12	1.44	17.31		ZARC0069: 12 m at $1.44 \mathrm{~g} / \mathrm{t}$ from 144 m incl. 1 m @ $3.4 \mathrm{~g} / \mathrm{t}, 10.7 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	162	163	1	1.63	1.63	240	ZARC0069: 1 m at 1.63g/t from 162m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	168	171	3	0.28	0.83		ZARC0069: 3 m at 0.28g/t from 168m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	192	194	2	0.12	0.24	240 Z	ZARC0069: 2 m at 0.12g/t from 192m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	200	204	4	1.10	4.39		ZARC0069: 4 m at $1.1 \mathrm{~g} / \mathrm{t}$ from 200 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 2.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0069	RC	234	235	1	0.47	0.47	240 Z	ZARC0069: 1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 234 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0070	RC	48	49	1	0.23	0.23		ZARC0070: 1 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0071	RC	19	20	1	0.22	0.22	198	ZARC0071: 1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 19 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0071	RC	84	88	4	0.48	1.92		ZARC0071: 4 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 84 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0071	RC	177	178	1	0.37	0.37		ZARC0071: 1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 177 m	1 m primary	$1 \mathrm{mc} / 00.1$
Ehuasso	ZARC0071	RC	181	183	2	0.91	1.82		ZARC0071: 2 m at 0.91g/t from 181m incl. 1 m @ 1.6g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Cont.

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZARC0071	RC	186	187	1	0.49	0.49		ZARC0071: 1 m at 0.49g/t from 186m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0072	RC	0	5	5	0.15	0.77	48	ZARCOO72: 5 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0072	RC	40	43	3	0.17	0.51	48	ZARC0072: 3 m at 0.17g/t from 40m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0073	RC	40	42	2	0.58	1.15	120	ZARC0073: 2 m at 0.58g/t from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	4	8	4	0.24	0.95	200	ZARC0074: 4 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	17	18	1	0.16	0.16	200	ZARC0074: 1 m at 0.16g/t from 17m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0074	RC	39	42	3	0.31	0.94	200	ZARC0074: 3 m at 0.31g/t from 39m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	78	84	6	0.29	1.71	200	ZARC0074: 6 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 78m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	87	88	1	0.12	0.12	200	ZARC0074: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 87 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	91	92	1	0.25	0.25		ZARC0074: 1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 91m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	141	143	2	0.67	1.34	200	ZARC0074: 2 m at $0.67 \mathrm{~g} / \mathrm{t}$ from 141 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0074	RC	147	151	4	0.26	1.05	200	ZARC0074: 4 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 147 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	1	7	6	0.36	2.14	260	ZARC0075: 6 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 1 m incl. 1 m @ 1.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	61	64	3	0.32	0.96	260	ZARC0075: 3 m at 0.32g/t from 61 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	67	74	7	7.31	51.19	260	ZARC0075: 7 m at $7.31 \mathrm{~g} / \mathrm{t}$ from 67 m incl. 1 m @ $3.6 \mathrm{~g} / \mathrm{t}, 31.73 \mathrm{~g} / \mathrm{t}, 14.58 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	77	80	3	0.12	0.35	260	ZARC0075: 3 m at 0.12g/t from 77m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	88	89	1	1.04	1.04	260	ZARC0075: 1 m at 1.04g/t from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	117	119	2	0.23	0.47	260	ZARC0075: 2 m at 0.23g/t from 117m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0075	RC	160	161	1	0.69	0.69		ZARC0075: 1 m at 0.69g/t from 160m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0075	RC	193	198	5	1.97	9.85	260	ZARC0075: 5 m at $1.97 \mathrm{~g} / \mathrm{t}$ from 193 m incl. 1 m @ $1.5 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}, 3.8 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0076	RC	144	145	1	0.27	0.27		ZARC0076: 1 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 144 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	70	77	7	0.14	0.97	268	ZARC0077: 7 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 70 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	79	80	1	0.25	0.25	268	ZARCOO77: 1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 79 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	82	88	6	0.30	1.80		ZARCOO77: 6 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 82 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	91	92	1	0.31	0.31	268	ZARC0077: 1 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 91 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	99	103	4	0.42	1.67	268	ZARC0077: 4 m at 0.42g/t from 99 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	105	108	3	0.70	2.09	268	ZARC0077: 3 m at 0.7g/t from 105m incl. 1 m @ 2g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	120	121	1	0.37	0.37	268	ZARC0077: 1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 120 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	138	147	9	0.47	4.27	268	ZARC0077: 9 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 138 m incl. 1 m @ 2.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	167	168	1	0.55	0.55		ZARC0077: 1 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 167m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	176	180	4	0.19	0.75	268	ZARC0077: 4 m at 0.19g/t from 176 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	184	185	1	0.33	0.33		ZARC0077: 1 m at 0.33g/t from 184m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	200	202	2	0.56	1.12	268	ZARC0077: 2 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 200 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	206	208	2	0.37	0.74	268	ZARC0077: 2 m at 0.37g/t from 206 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	252	253	1	0.24	0.24	268	ZARC0077: 1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 252 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0077	RC	255	256	1	0.19	0.19	268	ZARC0077: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 255 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	0	11	11	0.48	5.29	209	ZARC0079: 11 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 3.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	36	38	2	0.54	1.08	209	ZARCOO79: 2 m at $0.54 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	48	51	3	0.35	1.05		ZARC0079: 3 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	56	59	3	0.82	2.47	209	ZARC0079: 3 m at $0.82 \mathrm{~g} /$ t from 56 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	88	100	12	0.48	5.72	209	ZARC0079: 12 m at $0.48 \mathrm{~g} /$ t from 88 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	103	116	13	0.67	8.65	209	ZARC0079: 13 m at $0.67 \mathrm{~g} / \mathrm{t}$ from 103 m incl. $1 \mathrm{~m} @ 3.6 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	144	145	1	0.11	0.11	209	ZARC0079: 1 m at 0.11g/t from 144m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0079	RC	147	150	3	1.94	5.83	209	ZARC0079: 3 m at 1.94g/t from 147 m incl. 1 m @ 5.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0081	RC	0	2	2	0.19	0.39		ZARC0081: 2 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0081	RC	11	12	1	0.62	0.62		ZARC0081: 1 m at $0.62 \mathrm{~g} / \mathrm{t}$ from 11 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0081	RC	28	31	3	0.23	0.69		ZARC0081: 3 m at 0.23g/t from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0083	RC	0	19	19	0.20	3.84		ZARC0083: 19 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0083	RC	22	23	1	0.17	0.17		ZARC0083: 1 m at 0.17g/t from 22 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0083	RC	29	32	3	0.16	0.47		ZARC0083: 3 m at 0.16g/t from 29 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0083	RC	92	95	- 3	0.79	2.38		ZARC0083: 3 m at $0.79 \mathrm{~g} /$ t from 92 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0085	RC	4	12	8	0.47	3.78		ZARC0085: 8 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 4 m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0085	RC	19	22	3	0.20	0.60		ZARC0085: 3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 19 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0085	RC	32	35	3	0.67	2.02		ZARC0085: 3 m at 0.67g/t from 32 m incl. 1 m @ 1.5g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	56	63	7	6.86	48.00	199	ZARC0087: 7 m at $6.86 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ 43.5g/t, $1.3 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	65	79	14	0.34	4.80		ZARC0087: 14 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 65 m incl. 1 m @ 1.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	81	94	13	0.61	7.87		ZARC0087: 13 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 81 m incl. $1 \mathrm{~m} @ 3 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	96	113	17	0.19	3.29	199	ZARC0087: 17 m at 0.19g/t from 96 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0087	RC	144	160	16	0.25	4.03		ZARC0087: 16 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 144 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	0	1	1	3.26	3.26	200	ZARC0089: 1 m at $3.26 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	74	91	17	0.20	3.42		ZARC0089: 17 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 74 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	110	111	1	0.22	0.22	200	ZARC0089: 1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 110 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	114	120	6	0.72	4.30		ZARC0089: 6 m at $0.72 \mathrm{~g} / \mathrm{t}$ from 114 m incl. $1 \mathrm{~m} @ 1.8 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	152	156	4	0.15	0.59		ZARC0089: 4 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 152 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0089	RC	176	179	3	0.59	1.78		ZARC0089: 3 m at $0.59 \mathrm{~g} / \mathrm{t}$ from 176 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	0	1	1	0.10	0.10	250	ZARC0091: 1 m at 0.19/t from 0m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	54	63	9	0.27	2.45		ZARC0091: 9 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 54 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	80	88	8	0.23	1.80		ZARC0091: 8 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	93	96	3	0.14	0.42		ZARC0091: 3 m at 0.14g/t from 93m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	123	125	2	0.87	1.74		ZARC0091: 2 m at 0.87g/t from 123m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	160	164	4	0.14	0.56		ZARC0091: 4 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 160 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	224	225	1	0.12	0.12		ZARC0091: 1 m at 0.12g/t from 224 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0091	RC	228	229	1	0.22	0.22		ZARC0091: 1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 228 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0093	RC	12	15	3	0.14	0.43		ZARC0093: 3 m at 0.14g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0093	RC	17	20	3	0.27	0.81		ZARC0093: 3 m at 0.27g/t from 17m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0093	RC	77	109	32	0.58	18.43		ZARC0093: 32 m at $0.58 \mathrm{~g} / \mathrm{t}$ from 77 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0095	RC	52	54	2	0.49	0.98		ZARC0095: 2 m at 0.49g/t from 52 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0095	RC	106	107	1	0.94	0.94		ZARC0095: 1 m at 0.94g/t from 106m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0095	RC	120	124	4	0.17	0.70		ZARC0095: 4 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 120 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0095	RC	134	139	5	0.71	3.55		ZARC0095: 5 m at 0.71g/t from 134 m incl. 1 m @ 1.9g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \hline \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Ehuasso	ZARC0095	RC	180	182	2	0.19	0.37	200	O ZARCO095: 2	2 m at 0.19g/t from 180 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0095	RC	184	187	3	0.38	1.15		O ZARCO095: 3	3 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 184 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0095	RC	189	192	3	0.54	1.61	200	O ZARCOO95: 3	3 m at 0.54g/t from 189 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	40	46	- 6	0.78	4.66		0 ZARCO097: 6	mmat $0.78 \mathrm{~g} / \mathrm{t}$ from $40 \mathrm{mincl} .1 \mathrm{~m} @ 2.7 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	49	51	2	0.21	0.42	180	0 ZARCO097: 2	2 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 49 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	53	54	1	0.12	0.12		0 ZARC0097: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 53 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	56	57	1	0.14	0.14		0 ZARCO097: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 56 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0097	RC	63	64	1	46.31	46.31		ZARC0097: 1	1 m at $46.31 \mathrm{~g} / \mathrm{t}$ from 63m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	1	10	9	0.60	5.37		5 ZARCOO99: 9	9 m at $0.6 \mathrm{~g} / \mathrm{t}$ from $1 \mathrm{mincl} .1 \mathrm{~m} @ 2.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	12	15	3	0.28	0.83		5 ZARCO099: 3	3 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	33	36	3	0.29	0.86		5 ZARCOO99: 3	3 m at 0.29g/t from 33m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	98	107	9	4.08	36.74	205	5 ZARCOO99: 9	9 m at $4.08 \mathrm{~g} / \mathrm{t}$ from 98 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}, 28.6 \mathrm{~g} / \mathrm{t}, 5.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	112	114	2	0.83	1.66		5 ZARCOO99: 2	2 m at $0.83 \mathrm{~g} / \mathrm{t}$ from 112 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	116	117	1	0.23	0.23	205	5 ZARCO099: 1	1 m at 0.23g/t from 116 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	120	121	1	0.31	0.31	205	5 ZARCOO99: 1	1 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 120 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	126	128	- 2	0.29	0.58	205	5 ZARCOO99: 2	2 m at 0.29g/t from 126 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	181	187	6	0.21	1.27		5 ZARCOO99: 6	6 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 181 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0099	RC	189	193	4	0.44	1.76		5 ZARCOO99: 4	4 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 189 m incl. 1 m @ 1.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	0	8	8	0.38	3.07		O ZARCO101: 8	8 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	20	31	11	1.19	13.06		O ZARC0101: 1	11 m at $1.19 \mathrm{~g} / \mathrm{t}$ from 20 m incl. $1 \mathrm{~m} @ 7.6 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	36	40	4	0.21	0.85	200	O0 ZARC0101: 4	4 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	44	51	7	1.32	9.24	200	O0 ZARCO101: 7	7 m at $1.32 \mathrm{~g} / \mathrm{t}$ from 44 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	55	64	9	1.76	15.88	200	O ZARC0101: 9	9m at $1.76 \mathrm{~g} / \mathrm{t}$ from 55 m incl. $1 \mathrm{~m} @ 5 \mathrm{~g} / \mathrm{t}, 7.3 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	67	68	1	1.01	1.01	200	O ZARC0101: 1	1 m at $1.01 \mathrm{~g} / \mathrm{t}$ from 67 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	73	87	14	2.58	36.14	200	O0 ZARC0101: 1	14 m at $2.58 \mathrm{~g} / \mathrm{t}$ from 73 m incl. $1 \mathrm{~m} @ 3.2 \mathrm{~g} / \mathrm{t}, 3.4 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 3.6 \mathrm{~g} / \mathrm{t}$, 1	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0101	RC	144	146	2	0.16	0.32	200	O ZARC0101: 2	2 m at 0.16g/t from 144 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0102	RC	0	2	2	0.15	0.29		1 ZARCO102: 2	2m at $0.15 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0102	RC	26	34	8	0.35	2.78		1 ZARC0102: 8	8m at $0.35 \mathrm{~g} / \mathrm{t}$ from 26 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0102	RC	37	47	10	0.22	2.18		1 ZARCO102: 1	10 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 37 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO102	RC	69	72	3	0.36	1.07		1 ZARC0102: 3	3m at $0.36 \mathrm{~g} / \mathrm{t}$ from 69 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0102	RC	101	115	14	10.52	147.25		1 ZARC0102: 1	. 14 m at $10.52 \mathrm{~g} / \mathrm{t}$ from 101 m incl. $1 \mathrm{~m} @ 6.8 \mathrm{~g} / \mathrm{t}, 72.6 \mathrm{~g} / \mathrm{t}, 14.6 \mathrm{~g} / \mathrm{t}, 4.1$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO102	RC	164	165	1	0.12	0.12		1 ZARC0102: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 164 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0103	RC	0	4	4	0.14	0.55		6 ZARC0103: 4	4 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0103	RC	15	16	1	0.73	0.73		6 ZARCO103: 1	1 m at $0.73 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	33	36	3	0.15	0.46		O ZARC0104: 3	3 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	45	50	5	0.32	1.59	200	O ZARC0104: 5	5 m at $0.32 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO104	RC	52	60	8	0.16	1.30	200	O ZARC0104: 8	8 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	64	66	2	4.31	8.63	200	O0 ZARC0104: 2	2 m at $4.31 \mathrm{~g} / \mathrm{t}$ from 64 m incl. 1 m @ 8.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO104	RC	69	71	2	0.66	1.32		O ZARCO104: 2	2 m at $0.66 \mathrm{~g} / \mathrm{t}$ from 69 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	80	82	2	4.83	9.66		O ZARCO104: 2	2 m at $4.83 \mathrm{~g} / \mathrm{t}$ from 80 m incl. $1 \mathrm{~m} @ 9.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	84	85	1	0.12	0.12		O ZARC0104: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 84 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	100	109	9	0.39	3.54		O ZARC0104: 9	9 m at 0.39g/t from 100 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO104	RC	111	123	12	1.92	23.04		OARC0104: 1	12 m at $1.92 \mathrm{~g} / \mathrm{t}$ from 111 m incl. $1 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}, 8.5 \mathrm{~g} / \mathrm{t}, 8.6 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO104	RC	126	141	15	0.57	8.51		O ZARC0104: 1	15 m at $0.57 \mathrm{~g} / \mathrm{t}$ from 126 m incl. $1 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	145	163	18	3.23	58.06		O ZARC0104: 1	18 m at $3.23 \mathrm{~g} / \mathrm{t}$ from 145 m incl. 1 m @ $14.8 \mathrm{~g} / \mathrm{t}, 13.2 \mathrm{~g} / \mathrm{t}, 3.9 \mathrm{~g} / \mathrm{t}, 5.9 \mathrm{~g} /$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	180	186	6	0.20	1.21	200	O ZARC0104: 6	6 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 180 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0104	RC	188	192	4	2.50	10.02		OARCO104: 4	4 m at $2.5 \mathrm{~g} / \mathrm{t}$ from 188 m incl. $1 \mathrm{~m} @ 7.7 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO105	RC	9	11	2	0.20	0.41	157	7 ZARCO105: 2	2 m at 0.2g/t from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0105	RC	106	109	3	3.05	9.16		7 ZARCO105: 3	3 m at $3.05 \mathrm{~g} / \mathrm{t}$ from 106 m incl. $1 \mathrm{~m} @ 5 \mathrm{~g} / \mathrm{t}, 4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0105	RC	111	112	1	0.13	0.13		7 ZARC0105: 1	1 m at 0.13g/t from 111m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0105	RC	142	147	5	0.78	3.88		7 ZARCO105: 5	5 m at $0.78 \mathrm{~g} / \mathrm{t}$ from 142 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}, 1.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	0	1	1	0.20	0.20		O ZARCO107: 1	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO107	RC	11	12	1	0.34	0.34		OARC0107: 1	1 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 11 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	42	43	1	0.13	0.13		O ZARC0107: 1	1m at $0.13 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	46	50	4	0.77	3.09		O ZARCO107: 4	4m at $0.77 \mathrm{~g} /$ t from 46 m incl. $1 \mathrm{~m} @ 2.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	52	57	5	0.66	3.31		OARC0107: 5	5m at $0.66 \mathrm{~g} / \mathrm{t}$ from 52 m incl. 1 m @ $1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	62	64	2	0.22	0.45		O ZARCO107: 2	2 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 62 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	68	75	7	0.36	2.54	280	O ZARCO107: 7	7m at $0.36 \mathrm{~g} / \mathrm{t}$ from 68 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	77	85	8	0.47	3.73		O ZARC0107: 8	8m at $0.47 \mathrm{~g} /$ t from 77 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	87	98	11	0.69	7.56		ZARC0107: 1	11m at 0.69g/t from 87 m incl. $1 \mathrm{~m} @ 5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	100	103	3	0.16	0.48		O ZARC0107: 3	3m at 0.16g/t from 100 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	194	200	6	0.37	2.21		0 ZARCO107: 6	6m at 0.37g/t from 194 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	202	203	1	0.20	0.20		O ZARCO107: 1	1 m at $0.2 \mathrm{~g} /$ from 202 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	222	234	12	0.45	5.42		O ZARCO107: 1	12m at $0.45 \mathrm{~g} / \mathrm{t}$ from 222 m incl. $1 \mathrm{~m} @ 1.9 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO107	RC	240	242	2	0.18	0.36		O ZARC0107: 2	2m at 0.18g/t from 240 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0107	RC	264	268	4	0.20	0.78		O ZARCO107: 4	4m at 0.2g/t from 264 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO107	RC	275	276	1	1.68	1.68		O ZARC0107: 1	1 m at $1.68 \mathrm{~g} / \mathrm{t}$ from 275 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0109	RC	0	4	4	0.20	0.80		4 ZARCO109: 4	4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0109	RC	134	135	1	0.65	0.65		4 ZARCO109: 1	1 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 134 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0109	RC	183	184	1	0.52	0.52		4 ZARC0109: 1	1 m at $0.52 \mathrm{~g} / \mathrm{t}$ from 183 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	1	8	7	0.79	5.52		2 ZARC0111: 7	7 m at $0.79 \mathrm{~g} / \mathrm{t}$ from 1 m incl. 1 m @ 4.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	17	20	3	0.20	0.59		2 ZARC0111: 3	3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	27	29	2	0.89	1.77		2 ZARC0111: 2	2m at $0.89 \mathrm{~g} / \mathrm{t}$ from 27 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	31	32	1	0.21	0.21		2 ZARC0111: 1	1 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 31 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	36	40	4	0.18	0.71		2 ZARC0111: 4	4m at 0.18g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	42	43	1	0.18	0.18		2 ZARC0111: 1	1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	60	63	3	0.15	0.46		2 ZARC0111: 3	3 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	89	91	2	0.39	0.78		2 ZARC0111: 2	2m at 0.39g/t from 89 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	93	96	3	0.12	0.35		2 ZARCO111: 3	3m at 0.12g/t from 93m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	116	118	2	0.13	0.27		2 ZARC0111: 2	2 m at 0.13g/t from 116 m	1 m primary	$1 \mathrm{~m} \mathrm{c/o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZARC0111	RC	151	152	1	0.20	0.20		ZARC0111: 1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 151 m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	155	160	5	0.41	2.03		ZARC0111: 5 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 155 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	166	167	1	1.96	1.96		ZARC0111: 1 m at 1.96g/t from 166m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0111	RC	172	179	7	0.62	4.34		ZARC0111: 7 m at $0.62 \mathrm{~g} / \mathrm{t}$ from 172 m incl. $1 \mathrm{~m} @ 2.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	0	1	1	0.12	0.12		ZARC0113: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	3	4	1	0.11	0.11		ZARC0113: 1 m at 0.11g/t from 3m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	72	74	2	0.46	0.92		ZARC0113: 2 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 72 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0113	RC	144	145	1	1.10	1.10		ZARCO113: 1 m at $1.1 \mathrm{~g} / \mathrm{t}$ from 144 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	159	160	1	1.03	1.03		ZARC0113: 1 m at 1.03g/t from 159m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	162	164	2	0.17	0.34		ZARC0113: 2 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 162 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	180	181	1	0.13	0.13		ZARC0113: 1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 180 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0113	RC	210	211	1	0.42	0.42		ZARC0113: 1 m at $0.42 \mathrm{~g} / \mathrm{t}$ from 210 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	0	1	1	0.24	0.24		ZARCO115: 1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	17	32	15	0.24	3.59		ZARCO115: 15 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	60	63	3	0.56	1.69		ZARC0115: 3 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 60 m incl. 1 m @ 1.5g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	76	87	11	0.19	2.09		ZARC0115: 11 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	107	108	1	0.65	0.65		ZARC0115: 1 m at 0.65g/t from 107m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	180	181	1	0.18	0.18		ZARCO115: 1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 180 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0115	RC	183	184	1	0.30	0.30		ZARC0115: 1 m at 0.3g/t from 183m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO119	RC	0	2	2	0.21	0.41		ZARC0119: 2 m at $0.21 \mathrm{~g} /$ t from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0119	RC	34	35	1	0.16	0.16		ZARC0119: 1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0119	RC	60	65	5	0.17	0.85		ZARCO119: 5 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	68	69	1	0.13	0.13		ZARCO119: 1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 68 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	71	72	1	0.28	0.28		ZARC0119: 1 m at 0.28g/t from 71m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	94	96	2	0.14	0.27		ZARCO119: 2 m at 0.14g/t from 94m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	149	151	2	0.71	1.42		ZARC0119: 2 m at 0.71g/t from 149 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	161	163	2	0.14	0.28		ZARCO119: 2 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 161 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	172	175	3	0.24	0.73		ZARCO119: 3 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 172 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	179	182	3	0.18	0.55		ZARC0119: 3 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 179 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARC0119	RC	193	195	2	0.83	1.67		ZARC0119: 2 m at 0.83g/t from 193m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0119	RC	213	215	2	0.48	0.97		ZARC0119: 2 m at 0.48g/t from 213 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARCO121	RC	0	4	4	0.18	0.72		ZARC0121: 4 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARCO121	RC	71	82	11	1.93	21.27	250 Z	ZARC0121: 11 m at $1.93 \mathrm{~g} / \mathrm{t}$ from 71 m incl. $1 \mathrm{~m} @ 14.3 \mathrm{~g} / \mathrm{t}, 5.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0121	RC	84	91	7	1.54	10.78		ZARC0121: 7 m at $1.54 \mathrm{~g} / \mathrm{t}$ from 84 m incl. 1 m @ $4.1 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 4.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0121	RC	160	161	1	0.18	0.18		ZARC0121: 1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 160 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0121	RC	234	242	8	1.29	10.32		ZARC0121: 8 m at $1.29 \mathrm{~g} / \mathrm{t}$ from 234 m incl. 1 m @ $4.5 \mathrm{~g} / \mathrm{t}, 2.2 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO125	RC	56	58	2	1.40	2.80		ZARCO125: 2 m at $1.4 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ $2.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0125	RC	113	117	4	0.17	0.69		ZARCO125: 4 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 113 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0125	RC	123	126	3	0.27	0.80		ZARCO125: 3 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 123 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0125	RC	156	160	4	0.51	2.05		ZARC0125: 4 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 156 m incl. 1 m @ 1.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0125	RC	162	165	3	0.39	1.17		ZARC0125: 3 m at 0.39g/t from 162m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO125	RC	172	173	1	1.93	1.93		ZARC0125: 1 m at $1.93 \mathrm{~g} / \mathrm{t}$ from 172 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARCO125	RC	187	188	1	0.61	0.61		ZARCO125: 1 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 187 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO125	RC	234	235	1	0.22	0.22	304	ZARC0125: 1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 234 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZARCO125	RC	282	294	12	0.65	7.85		ZARCO125: 12 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 282 m incl. $1 \mathrm{~m} @ 4.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0127	RC	99	101	2	1.12	2.25		ZARC0127: 2 m at 1.12g/t from 99m incl. 1 m @ $2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0127	RC	124	127	3	0.38	1.15		ZARC0127: 3 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 124 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0127	RC	166	171	5	0.28	1.41		ZARCO127: 5 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 166 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0127	RC	187	188	1	0.34	0.34		ZARCO127: 1 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 187 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0129	RC	0	4	4	0.12	0.48		ZARC0129: 4 m at 0.12g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0129	RC	45	46	1	0.28	0.28		ZARC0129: 1 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARC0129	RC	161	164	3	0.20	0.60		ZARC0129: 3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 161 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZARCO129	RC	228	243	15	0.16	2.41		ZARC0129: 15 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 228 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0001	DD	0	2	2	0.39	0.77	201.2	ZADD0001: 2 m at $0.39 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	12	18	6	0.17	1.00	201.2 Z	ZADD0001: 6 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0001	DD	25	26	1	0.19	0.19	201.2	ZADD0001: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0001	DD	30	32	2	0.18	0.36	201.2	ZADD0001: 2 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	47	48	1	1.64	1.64	201.2	ZADD0001: 1 m at 1.64g/t from 47m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	50	51	1	0.11	0.11	201.2	ZADD0001: 1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	54	60	6	0.13	0.78	201.2	ZADD0001: 6 m at 0.13g/t from 54m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	88	89	1	0.37	0.37	201.2	ZADD0001: 1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	110	111	1	0.12	0.12	201.2	ZADD0001: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 110 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	129	130	1	0.10	0.10	201.2	ZADD0001: 1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 129 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0001	DD	138	139	1	0.11	0.11	201.2	ZADD0001: 1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 138 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	141	141	0	0.11	0.00	201.2	ZADD0001: 0 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 141 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0001	DD	146	148	2	0.54	1.08	201.2	ZADD0001: 2 m at $0.54 \mathrm{~g} / \mathrm{t}$ from 146 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0001	DD	150	151	1	3.99	3.99	201.2	ZADD0001: 1 m at $3.99 \mathrm{~g} / \mathrm{t}$ from 150 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	0	1	1	0.19	0.19	201.37 ZAD	ZADD0002: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	18	20	2	0.16	0.32	201.37 ZAD	ZADD0002: 2 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	26	28	2	0.15	0.29	201.37 ZAD	ZADD0002: 2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 26 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	30	36	6	0.21	1.28	201.37 ZAD	ZADD0002: 6 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	40	42	2	0.17	0.34	201.37 ZAD	ZADD0002: 2 m at 0.17g/t from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	58	59	1	0.12	0.12	201.37 Z	ZADD0002: 1 m at 0.12g/t from 58m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	65	66	1	0.16	0.16	201.37 ZAD	ZADD0002: 1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 65 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	71	72	1	4.78	4.78	201.37 Z	ZADD0002: 1 m at 4.78g/t from 71m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	85	86	1	0.29	0.29	201.37 ZAD	ZADD0002: 1 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 85 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	94	95	1	0.19	0.19	201.37 Z	ZADD0002: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 94 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0002	DD	100	109	9	0.23	2.03	201.37 ZAD	ZADDO002: 9 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 100 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0002	DD	112	114	2	0.14	0.27	201.37 Z	ZADDO002: 2 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 112 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0002	DD	122	123	1	0.12	0.12	201.37 Z	ZADD0002: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 122 m	1 m primary	$1 \mathrm{mc/o} 0.1$

Prospect	Hole_ID	Drill Type	From m	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Ehuasso	ZADD0002	DD	129	130	1	0.17	0.17	201.37	ZADD0002: 1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 129 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	133	140	7	0.53	3.71	201.37	ZADD0002: 7 m at 0.53g/t from 133 m incl. 1 m @ 2.2g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	142	143	1	0.10	0.10	201.37	ZADD0002: 1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 142 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	150	153	3	0.30	0.90	201.37	ZADDO002: 3 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 150 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	155	155	0	24.03	0.00	201.37	ZADD0002: 0 m at $24.03 \mathrm{~g} / \mathrm{t}$ from 155 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0002	DD	157	158	1	0.32	0.32	201.37	ZADD0002: 1 m at 0.32g/t from 157m	1 m primary	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0003	DD	17	25	8	0.23	1.88	243.15	ZADD0003: 8 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	30	32	2	0.18	0.36	243.15	ZADD0003: 2 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 30 m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	58	59	1	0.14	0.14	243.15	ZADD0003: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 58 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	63	68	5	2.59	12.96	243.15	ZADD0003: 5 m at $2.59 \mathrm{~g} / \mathrm{t}$ from 63 m incl. 1 m @ $10.3 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	113	114	1	0.14	0.14	243.15	ZADD0003: 1 m at 0.14g/t from 113 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	117	118	1	0.10	0.10	243.15	ZADD0003: 1 m at 0.1g/t from 117 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	121	122	1	0.17	0.17	243.15	ZADD0003: 1 m at 0.17g/t from 121m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	124	126	2	0.26	0.51	243.15	ZADD0003: 2 m at 0.26g/t from 124 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	130	133	3	0.47	1.42	243.15	ZADD0003: 3 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 130 m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	138	141	3	0.16	0.48	243.15	ZADD0003: 3 m at 0.16g/t from 138 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	143	145	2	0.19	0.39	243.15	ZADD0003: 2 m at 0.19g/t from 143m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	147	148	1	0.15	0.15	243.15	ZADD0003: 1 m at 0.15g/t from 147m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	154	157	3	0.24	0.73	243.15	ZADD0003: 3 m at 0.24g/t from 154m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	164	166	2	0.24	0.47	243.15	ZADD0003: 2 m at 0.24g/t from 164 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	189	190	1	0.11	0.11	243.15	ZADD0003: 1 m at 0.11g/t from 189m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	193	194	1	0.12	0.12	243.15	ZADD0003: 1 m at 0.12g/t from 193m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	207	208	1	0.46	0.46	243.15	ZADD0003: 1 m at 0.46g/t from 207 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0003	DD	229	230	1	0.11	0.11	243.15	ZADD0003: 1 m at 0.11g/t from 229 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0800	AC	33	35	2	0.26	0.52		ZAACO800: 2 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0800	AC	42	43	1	0.20	0.20		ZAAC0800: 1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0801	AC	9	11	2	0.27	0.53		ZAAC0801: 2 m at 0.27g/t from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0801	AC	13	14	1	0.42	0.42		ZAAC0801: 1 m at 0.42g/t from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0801	$A C$	17	19	2	0.17	0.34		ZAAC0801: 2 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0801	AC	21	26	5	0.16	0.79		ZAAC0801: 5 m at 0.16g/t from 21m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0801	$A C$	55	56	1	0.26	0.26		ZAAC0801: 1 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 55 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0806	AC	1	4	3	0.48	1.45		ZAAC0806: 3 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 1 m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0807	AC	0	2	2	0.18	0.36		ZAAC0807: 2 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0807	AC	6	12	6	0.92	5.50		ZAAC0807: 6 m at 0.92g/t from 6 m incl. 1 m @ 4.6g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0807	AC	15	29	14	0.34	4.76		ZAAC0807: 14 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0807	AC	31	43	12	0.31	3.78		ZAAC0807: 12 m at 0.31g/t from 31m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0807	AC	46	51	5	0.22	1.12		ZAAC0807: 5 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 46m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0808	AC	0	1	1	0.14	0.14		ZAAC0808: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0808	AC	3	4	1	0.22	0.22		ZAAC0808: 1 m at 0.22g/t from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0814	AC	1	2	1	0.24	0.24		ZAAC0814: 1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0814	AC	30	33	3	0.45	1.35		ZAAC0814: 3 m at $0.45 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0814	AC	35	36	1	0.19	0.19		ZAAC0814: 1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 35 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0815	AC	5	8	3	0.38	1.13		ZAAC0815: 3 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 5 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0815	AC	46	48	2	0.66	1.32		ZAAC0815: 2 m at $0.66 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0815	AC	59	60	1	0.39	0.39		ZAAC0815: 1 m at 0.39g/t from 59 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0816	AC	0	7	7	0.34	2.35		ZAAC0816: 7 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0816	AC	44	45	1	0.61	0.61		ZAAC0816: 1 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0818	AC	17	20	3	0.23	0.70		ZAAC0818: 3 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0818	AC	22	28	6	0.34	2.05		ZAAC0818: 6 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 22 m incl. 1 m @ $1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0818	AC	40	54	14	0.78	10.96		Z ZAAC0818: 14 m at $0.78 \mathrm{~g} / \mathrm{t}$ from 40 m incl. $1 \mathrm{~m} @ 4.5 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0819	AC	15	16	1	0.25	0.25		ZAAC0819: 1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0819	AC	26	35	9	0.43	3.90		ZAAC0819: 9 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 26 m incl. 1 m @ $1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0819	AC	41	43	2	0.15	0.31		ZAAC0819: 2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 41m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0821	AC	0	1	1	0.14	0.14		ZAAC0821: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0823	AC	37	40	3	0.64	1.91		ZAAC0823: 3 m at $0.64 \mathrm{~g} / \mathrm{t}$ from 37 m incl. 1 m @ 1.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0823	AC	43	48	5	0.29	1.45		ZAAC0823: 5 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 43 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0824	AC	1	3	2	0.21	0.43		ZAAC0824: 2 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0824	AC	16	26	10	0.35	3.50		ZAAC0824: 10 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 16 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0824	AC	29	35	6	0.26	1.53		ZAAC0824: 6 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 29 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0824	AC	40	42	2	0.33	0.66		ZAAC0824: 2 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0825	AC	0	8	8	0.25	2.04		ZAAC0825: 8 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0825	AC	16	35	19	0.55	10.38		26AAC0825: 19 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 16 m incl. $1 \mathrm{~m} @ 3 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0825	AC	48	49	1	0.72	0.72		ZAAC0825: 1 m at $0.72 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0826	AC	0	8	8	0.43	3.43		ZAAC0826: 8 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 0 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0826	AC	32	33	1	2.20	2.20		ZAAC0826: 1 m at $2.2 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0827	AC	1	2	1	0.36	0.36		ZAAC0827: 1 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0827	AC	5	6	1	0.51	0.51		ZAAC0827: 1 m at 0.51g/t from 5 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0827	AC	16	20	4	0.41	1.66		ZAAC0827: 4 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 16 m incl. 1 m @ $1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0827	AC	25	27	2	0.22	0.44		ZAAC0827: 2 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0831	AC	47	48	1	0.24	0.24		ZAAC0831: 1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 47 m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0833	AC	5	17	12	1.01	12.11		ZAAC0833: 12 m at $1.01 \mathrm{~g} / \mathrm{t}$ from 5 m incl. 1 m @ $1.9 \mathrm{~g} / \mathrm{t}, 3.2 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 4.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0833	AC	23	25	- 2	0.12	0.25		6 ZAAC0833: 2 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0833	AC	27	32	- 5	0.87	4.34		ZAAC0833: 5 m at $0.87 \mathrm{~g} / \mathrm{t}$ from 27 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0834	AC	0	3	3	0.52	1.55		ZAAC0834: 3 m at 0.52g/t from Om incl. 1 m @ 1.2g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0836	AC	17	20	3	0.49	1.46		ZAAC0836: 3 m at 0.49g/t from 17 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0836	AC	34	36	2	0.42	0.85		ZAAC0836: 2 m at $0.42 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0837	AC	2	3	1	0.61	0.61		ZAAC0837: 1 m at 0.61g/t from 2 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0837	AC	5	9	4	1.82	7.27		ZAAC0837: 4 m at $1.82 \mathrm{~g} / \mathrm{t}$ from 5 m incl. 1 m @ 6.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0841	AC	0	9	9	0.25	2.22		ZAAC0841: 9 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0841	AC	12	31	19	0.45	8.62		ZAAC0841: 19 m at $0.45 \mathrm{~g} / \mathrm{t}$ from 12 m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Cont.

Cont.

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Mbasso	ZAAC0900	AC	1	22	21	0.55	11.51	22	2 ZAAC0900: 2	21 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 1 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.2 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0901	AC	0	4	4	0.17	0.70		2 ZAAC0901: 4	4 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0901	AC	10	11	1	0.13	0.13	32	2 ZAAC0901: 1	1m at 0.13g/t from 10 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0902	AC	0	2	2	0.32	0.65		6 ZAACO902: 2	2 m at $0.32 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0902	AC	15	16	1	0.28	0.28	36	6 ZAAC0902: 1	1m at $0.28 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0903	AC	12	24	12	0.74	8.92		1 ZAAC0903: 1	12 m at $0.74 \mathrm{~g} / \mathrm{t}$ from 12 m incl. $1 \mathrm{~m} @ 2.2 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0903	AC	44	50	6	0.85	5.12		1 ZAAC0903: 6	6m at $0.85 \mathrm{~g} / \mathrm{t}$ from 44 m incl. $1 \mathrm{~m} @ 2.3 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0904	AC	0	3	3	0.13	0.39	56	6 ZAACO904: 3	3 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0904	AC	17	51	34	0.89	30.25		6 ZAACO904: 3	34m at $0.89 \mathrm{~g} / \mathrm{t}$ from 17 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 3.1 \mathrm{~g} / \mathrm{t}, 1.1 \mathrm{~g} / \mathrm{t}, 3.3 \mathrm{~g} / \mathrm{t}$, 1.	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0904	AC	53	56	3	0.18	0.53	56	6 ZAAC0904: 3	3 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 53 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0905	AC	0	2	2	0.47	0.95		4 ZAACO905: 2	2 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0909	AC	22	23	1	0.55	0.55		7 ZAACO909: 1	1 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 22 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0910	AC	0	1	1	2.38	2.38		2 ZAAC0910: 1	1 m at $2.38 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0910	AC	4	26	22	0.25	5.61		2 ZAAC0910: 2	22 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 4 m incl. 1 m @ 1.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0910	AC	30	31	1	0.30	0.30		2 ZAAC0910: 1	1 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0911	AC	0	1	1	0.34	0.34	39	9 ZAAC0911: 1	1 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0911	AC	3	30	27	0.23	6.34		9 ZAAC0911: 2	: 27 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0912	$A C$	6	9	3	0.50	1.49		4 ZAAC0912: 3	3 m at $0.5 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0913	AC	0	3	3	0.14	0.41		4 ZAAC0913: 3	3 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0913	AC	9	24	15	0.74	11.17		4 ZAAC0913: 1	15 m at $0.74 \mathrm{~g} / \mathrm{t}$ from 9 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0914	AC	0	3	3	0.24	0.72		6 ZAAC0914: 3	3 m at $0.24 \mathrm{~g} / \mathrm{t}$ from Om	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0915	AC	9	19	10	0.21	2.10		4 ZAAC0915: 1	10 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0917	AC	13	27	14	0.26	3.60		6 ZAAC0917: 1	14m at $0.26 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0918	AC	0	1	1	0.21	0.21		1 ZAAC0918: 1	1 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0918	AC	3	4	1	0.51	0.51		1 ZAAC0918: 1	1 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0918	AC	45	51	6	0.25	1.53		1 ZAAC0918: 6	6m at $0.25 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0919	AC	0	12	12	0.23	2.74		7 ZAAC0919: 1	12 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0919	AC	20	21	1	0.27	0.27		7 ZAAC0919: 1	1 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 20 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0919	$A C$	23	24	1	0.26	0.26		7 ZAAC0919: 1	1 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0919	$A C$	36	42	6	0.13	0.79		7 ZAAC0919: 6	6m at 0.13g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0919	AC	45	47	2	0.61	1.22		7 ZAAC0919: 2	2 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0920	AC	34	36	2	0.32	0.65		8 ZAACO920: 2	2 m at $0.32 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0920	AC	62	63	1	0.92	0.92		8 ZAACO920: 1	1 m at $0.92 \mathrm{~g} / \mathrm{t}$ from 62 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0922	AC	44	47	3	0.36	1.07		2 ZAAC0922: 3	3 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0927	AC	47	48	1	0.42	0.42		9 ZAAC0927: 1	1m at 0.42g/t from 47m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0928	AC	14	23	9	0.31	2.75		3 ZAAC0928: 9	9m at 0.31g/t from 14 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0928	AC	25	30	5	0.20	0.98		3 ZAAC0928: 5	5 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0928	AC	89	91	2	0.37	0.74		3 ZAAC0928: 2	2 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 89 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC0930	AC	60	61	1	1.21	1.21		0 ZAAC0930: 1	1 m at $1.21 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0930	AC	63	65	2	1.51	3.02		0 ZAACO930: 2	2 m at $1.51 \mathrm{~g} / \mathrm{t}$ from 63 m incl. 1 m @ $2.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0930	$A C$	88	90	2	0.62	1.25		0 ZAAC0930: 2	2 m at $0.62 \mathrm{~g} / \mathrm{t}$ from 88 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0931	AC	16	18	2	0.23	0.46		3 ZAAC0931: 2	2 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0931	AC	20	24	4	0.52	2.08		3 ZAAC0931: 4	4m at 0.52g/t from 20 m incl. $1 \mathrm{~m} @ 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0931	AC	32	33	1	0.37	0.37		3 ZAAC0931: 1	1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0931	AC	37	43	6	0.59	3.54		3 ZAAC0931: 6	6m at 0.59g/t from 37m incl. 1 m @ 2.7g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0938	AC	34	35	1	0.36	0.36		1 ZAAC0938: 1	1 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC0939	AC	37	45	8	0.91	7.32		8 ZAACO939: 8	8 m at $0.91 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 3 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0939	AC	47	48	1	1.03	1.03		8 ZAAC0939: 1	1 m at $1.03 \mathrm{~g} / \mathrm{t}$ from 47 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0943	AC	16	17	1	0.22	0.22		9 ZAAC0943: 1	1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0943	AC	19	20	1	0.55	0.55		9 ZAAC0943: 1	1 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 19 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0943	AC	28	30	2	0.19	0.39		9 ZAAC0943: 2	2 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0944	AC	17	24	7	0.31	2.19		3 ZAAC0944: 7	7 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0944	AC	27	36	9	0.28	2.56		3 ZAAC0944: 9	9 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 27 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0949	AC	1	4	3	0.24	0.71		7 ZAAC0949: 3	3 m at $0.24 \mathrm{~g} /$ trom 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0952	AC	44	48	4	0.19	0.77		6 ZAAC0952: 4	4m at 0.19g/t from 44m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0952	AC	60	61	1	3.49	3.49		6 ZAAC0952: 1	1 m at $3.49 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0953	AC	2	7	5	0.20	0.98		4 ZAACO953: 5	5 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0953	AC	9	11	2	0.31	0.61		4 ZAACO953: 2	2 m at $0.31 \mathrm{~g} /$ trom 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0953	AC	13	28	15	0.45	6.82		4 ZAACO953: 1	15 m at 0.45g/t from 13 m incl. 1 m @ 3.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0953	AC	36	40	4	0.28	1.14		4 ZAACO953: 4	4 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0954	AC	25	29	4	0.27	1.09		5 ZAACO954: 4	4 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0955	AC	3	4	1	0.12	0.12		1 ZAAC0955: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0955	AC	49	54	5	0.19	0.97		1 ZAAC0955: 5	5 m at 0.19g/t from 49m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0955	AC	58	60	2	0.53	1.06		1 ZAAC0955: 2	2 m at $0.53 \mathrm{~g} / \mathrm{t}$ from 58 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0961	AC	30	32	2	0.21	0.43		7 ZAAC0961: 2	2 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0961	AC	52	56	4	0.18	0.74		7 ZAAC0961: 4	4m at 0.18g/t from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0962	AC	36	39	3	1.45	4.35		2 ZAAC0962: 3	3 m at $1.45 \mathrm{~g} / \mathrm{t}$ from 36 m incl. $1 \mathrm{~m} @ 4.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0963	AC	44	45	1	1.00	1.00		0 ZAAC0963: 1	1 m at $1 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0964	AC	0	1	1	0.13	0.13		6 ZAAC0964: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0965	AC	28	30	2	1.47	2.94		1 ZAAC0965: 2	2 m at $1.47 \mathrm{~g} /$ t from 28 m incl. $1 \mathrm{~m} @ 2.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0969	AC	29	30	1	0.17	0.17		5 ZAACO969: 1	1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 29 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0970	AC	61	63	2	0.93	1.86		3 ZAAC0970: 2	2 m at 0.93g/t from 61m incl. 1 m @ 1.3g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0973	AC	46	47	1	0.47	0.47		0 ZAAC0973: 1	1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0974	AC	9	13	4	0.27	1.08		0 ZAAC0974: 4	4 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0974	AC	20	23	3	0.20	0.60		0 ZAAC0974: 3	3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 20 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0974	AC	28	30	2	1.50	3.01		0 ZAAC0974: 2	2 m at $1.5 \mathrm{~g} / \mathrm{t}$ from 28 m incl. 1 m @ 2.9g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0974	AC	43	44	1	0.70	0.70		0 ZAAC0974: 1	1 m at $0.7 \mathrm{~g} / \mathrm{t}$ from 43m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0974	$A C$	52	59	7	0.17	1.20		0 ZAAC0974: 7	7 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0975	AC	0	3	3	0.21	0.64		8 ZAAC0975: 3	3 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0976	AC	1	2	1	0.18	0.18		2 ZAAC0976: 1	1 m at $0.18 \mathrm{~g} /$ f from 1 m	1 m primary	$1 \mathrm{mc/o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \\ \hline \end{gathered}$	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Mbasso	ZAAC0979	AC	39	43	4	18.96	75.84		61 ZAAC0979: 4 m at 18.96g/t from 39m incl. 1 m @ 1.7g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0979	AC	45	46	1	1.42	1.42		61 ZAAC0979: 1 m at 1.42g/t from 45m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0979	AC	56	60	4	0.13	0.52		61 ZAAC0979: 4 m at 0.13g/t from 56 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0980	AC	12	24	12	0.22	2.64		1 ZAAC0980: 12 m at 0.22g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0980	AC	36	38	2	0.51	1.01		71 ZAAC0980: 2 m at 0.51g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0980	AC	49	50	1	0.45	0.45		$11 \mathrm{ZAAC0980}$: 1 m at 0.45g/t from 49 m	1 m primary	$1 \mathrm{mc} / \mathrm{0} 0.1$
Mbasso	ZAAC0981	AC	80	81	1	0.36	0.36		83 ZAAC0981: 1 m at 0.36g/t from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0982	AC	25	28	3	1.99	5.96		51 ZAAC0982: 3 m at $1.99 \mathrm{~g} / \mathrm{t}$ from 25 m incl. 1 m @ $3.8 \mathrm{~g} / \mathrm{t}, 1.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0983	AC	0	2	2	0.15	0.29		56 ZAAC0983: 2 m at 0.15g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0983	AC	12	14	2	0.32	0.65		56 ZAAC0983: 2 m at 0.32g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0984	$A C$	48	51	3	0.52	1.57		51 ZAAC0984: 3 m at 0.52g/t from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0985	AC	5	8	3	1.23	3.68		60 ZAAC0985: 3 m at $1.23 \mathrm{~g} / \mathrm{t}$ from 5 m incl. 1 m @ $2.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0985	AC	12	14	2	1.30	2.59		60 ZAAC0985: 2 m at $1.3 \mathrm{~g} / \mathrm{t}$ from 12 m incl. 1 m @ $2.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0986	AC	30	31	1	0.15	0.15		62 ZAAC0986: 1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0987	AC	1	2	1	0.15	0.15		50 ZAAC0987: 1 m at 0.15g/t from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0991	AC	44	48	4	0.22	0.88		56 ZAAC0991: 4 m at 0.22g/t from 44m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0992	$A C$	0	1	1	0.26	0.26		63 ZAAC0992: 1 m at 0.26g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0992	AC	42	45	3	0.27	0.82		63 ZAAC0992: 3 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0992	AC	51	52	1	0.27	0.27		63 ZAAC0992: 1 m at 0.27g/t from 51m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0992	AC	57	63	6	0.22	1.33		63 ZAAC0992: 6 m at 0.22g/t from 57 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0993	AC	0	10	10	0.56	5.58		59 ZAACO993: 10 m at 0.56g/t from 0 m incl. $1 \mathrm{~m} @ 3.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0993	AC	12	15	3	0.16	0.48		59 ZAAC0993: 3 m at 0.16g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0993	AC	18	19	1	0.47	0.47		59 ZAAC0993: 1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0993	AC	33	37	4	0.13	0.51		59 ZAAC0993: 4 m at 0.13g/t from 33 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0993	AC	41	43	2	0.48	0.95		59 ZAAC0993: 2 m at 0.48g/t from 41m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0993	AC	52	58	6	1.10	6.62		59 ZAACO993: 6 m at $1.1 \mathrm{~g} / \mathrm{t}$ from 52 m incl. 1 m @ $2.1 \mathrm{~g} / \mathrm{t}, 2.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0994	$A C$	25	30	5	1.27	6.35		57 ZAAC0994: 5 m at $1.27 \mathrm{~g} / \mathrm{t}$ from 25 m incl. 1 m @ $1.8 \mathrm{~g} / \mathrm{t}, 3.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0994	$A C$	39	40	1	0.36	0.36		57 ZAAC0994: 1 m at 0.36g/t from 39m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0996	AC	36	43	7	0.33	2.32		47 ZAAC0996: 7 m at 0.33g/t from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0997	AC	20	21	1	0.83	0.83		51 ZAAC0997: 1 m at 0.83g/t from 20 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC0998	$A C$	16	17	1	0.32	0.32		53 ZAAC0998: 1 m at 0.32g/t from 16 m	1m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC0999	AC	32	34	2	0.11	0.21		45 ZAAC0999: 2 m at 0.11g/t from 32m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1000	AC	41	44	3	1.91	5.72		45 ZAAC1000: 3 m at 1.91g/t from 41 m incl. 1 m @ 5.1g/t	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1001	AC	0	2	2	0.15	0.30		39 ZAAC1001: 2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1001	AC	4	6	2	0.33	0.67		39 ZAAC1001: 2 m at 0.33g/t from 4 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1002	AC	0	2	2	0.36	0.73		42 ZAAC1002: 2 m at 0.36g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1003	AC	50	53	3	0.68	2.04		70 ZAAC1003: 3 m at 0.68g/t from 50 m incl. 1 m @ 1.2g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1003	AC	55	56	1	0.16	0.16		70 ZAAC1003: 1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 55 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1004	AC	1	6	5	0.25	1.24		61 ZAAC1004: 5 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1004	AC	9	15	6	0.37	2.19		61 ZAAC1004: 6 m at $0.37 \mathrm{~g} /$ t from 9 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1004	AC	18	30	12	0.40	4.84		61 ZAAC1004: 12 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1004	AC	55	56	1	0.12	0.12		61 ZAAC1004: 1 m at 0.12g/t from 55 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1004	AC	60	61	1	0.32	0.32		61 ZAAC1004: 1 m at $0.32 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1005	AC	24	39	15	0.59	8.86		80 ZAAC1005: 15 m at $0.59 \mathrm{~g} / \mathrm{t}$ from 24 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}$, $3.3 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1005	AC	41	44	3	0.16	0.47		30 ZAAC1005: 3 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 41m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1005	AC	64	66	2	0.20	0.40		80 ZAAC1005: 2 m at $0.2 \mathrm{~g} /$ t from 64 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1007	AC	28	32	4	0.23	0.93		69 ZAAC1007: 4 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1009	AC	15	17	2	0.36	0.72		60 ZAAC1009: 2 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1009	AC	19	23	4	0.30	1.20		60 ZAAC1009: 4 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 19 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1009	AC	40	41	1	0.18	0.18		60 ZAAC1009: 1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 40 m	1m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1011	AC	61	62	1	0.41	0.41		64 ZAAC1011: 1 m at 0.41g/t from 61 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1012	AC	9	11	2	0.49	0.98		69 ZAAC1012: 2 m at 0.49g/t from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1012	AC	46	47	1	1.30	1.30		69 ZAAC1012: 1 m at $1.3 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1015	AC	40	41	1	0.88	0.88		63 ZAAC1015: 1 m at $0.88 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1016	AC	41	45	4	0.33	1.33		45 ZAAC1016: 4 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 41 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1021	AC	20	21	1	0.55	0.55		60 ZAAC1021: 1 m at $0.55 \mathrm{~g} / \mathrm{t}$ from 20 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1021	AC	23	24	1	0.50	0.50		60 ZAAC1021: 1 m at $0.5 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1021	AC	29	31	2	0.35	0.69		60 ZAAC1021: 2 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 29 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1026	AC	6	7	1	0.14	0.14		60 ZAAC1026: 1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1026	AC	48	60	12	3.14	37.71		50 ZAAC1026: 12 m at $3.14 \mathrm{~g} / \mathrm{t}$ from 48 m incl. 1 m @ $2 \mathrm{~g} / \mathrm{t}, 34 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1027	AC	43	44	1	0.12	0.12		62 ZAAC1027: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 43m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1028	AC	6	7	1	0.44	0.44		60 ZAAC1028: 1 m at $0.44 \mathrm{~g} / \mathrm{t}$ from 6 m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1032	AC	61	63	2	0.19	0.38		63 ZAAC1032: 2 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 61m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1036	AC	28	39	11	0.22	2.43		69 ZAAC1036: 11 m at 0.22g/t from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1036	AC	55	61	- 6	0.16	0.95		69 ZAAC1036: 6 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 55 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1036	AC	65	69	4	0.21	0.82		69 ZAAC1036: 4 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 65 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1037	AC	0	4	4	0.28	1.14		57 ZAAC1037: 4 m at 0.28g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1037	AC	20	24	4	0.17	0.66		57 ZAAC1037: 4 m at 0.17g/t from 20 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1037	AC	26	27	1	0.37	0.37		57 ZAAC1037: 1 m at 0.37g/t from 26 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1037	AC	30	36	6	0.31	1.85		57 ZAAC1037: 6 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 30 m incl. 1 m @ 1.2g/t	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1037	AC	49	52	3	0.32	0.95		57 ZAAC1037: 3 m at 0.32g/t from 49m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1039	$A C$	48	53	5	0.25	1.23		60 ZAAC1039: 5 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1039	AC	56	60	4	3.55	14.20		50 ZAAC1039: 4 m at $3.55 \mathrm{~g} / \mathrm{t}$ from 56 m incl. 1 m @ $13.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1040	AC	3	10	7	0.56	3.91		51 ZAAC1040: 7 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 3 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1046	AC	32	38	6	0.19	1.16		55 ZAAC1046: 6 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1046	AC	40	44	4	0.60	2.42		55 ZAAC1046: 4 m at 0.6g/t from 40m incl. 1 m @ 1.2g/t	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1046	AC	52	53	1	0.15	0.15		55 ZAAC1046: 1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1047	AC	1	4	3	0.38	1.13		32 ZAAC1047: 3 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 1 m	1m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1048	AC	17	19	2	0.13	0.26		40 ZAAC1048: 2 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 17 m	1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1048	AC	37	39	2	0.24	0.48		40 ZAAC1048: 2 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 37 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Cont.

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \\ \hline \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g / t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Mbasso	ZAAC1049	AC	8	11	3	0.28	0.85		88 ZAAC1049: 3	3 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 8 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1055	$A C$	1	2	1	1.46	1.46		47 ZAAC1055: 1	1 m at $1.46 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1057	AC	0	4	4	0.50	1.99		38 ZAAC1057: 4	4m at 0.5g/t from 0 m incl. 1 m @ 1.4g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1057	AC	8	9	1	0.37	0.37		88 ZAAC1057: 1	1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 8 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1057	AC	11	12	1	0.14	0.14		88 ZAAC1057: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 11 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1058	AC	16	18	2	0.19	0.39		6 ZAAC1058: 2	2 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1063	AC	1	3	2	0.58	1.15		2 ZAAC1063: 2	2 m at $0.58 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1074	AC	0	3	3	0.18	0.54		50 ZAAC1074: 3	3 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1074	AC	36	39	3	0.21	0.64		50 ZAAC1074: 3	3 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1074	AC	41	46	5	0.43	2.15		50 ZAAC1074: 5	5 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 41 m incl. 1 m @ $1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1075	AC	1	2	1	0.10	0.10		77 ZAAC1075: 1	1m at 0.18/t from 1 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1075	AC	29	30	1	0.14	0.14		77 ZAAC1075: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 29 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1075	AC	40	41	1	0.43	0.43		7 ZAAC1075: 1	1 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1076	AC	1	2	1	0.37	0.37		8 ZAAC1076: 1	1 m at $0.37 \mathrm{~g} /$ from 1 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1081	AC	9	10	1	0.11	0.11		5 ZAAC1081: 1	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1083	AC	33	34	1	0.22	0.22		60 ZAAC1083: 1	1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 33m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1083	AC	41	45	4	0.13	0.51		60 ZAAC1083: 4	4 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 41 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1083	$A C$	48	50	2	0.29	0.57		00 ZAAC1083: 2	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1083	AC	52	59	7	0.36	2.52		60 ZAAC1083: 7	7 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 52 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1084	AC	10	12	2	0.23	0.46		1 ZAAC1084: 2	2 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1085	AC	0	1	1	0.26	0.26		7 ZAAC1085: 1	1 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1089	AC	0	4	4	2.05	8.19		26 ZAAC1089: 4	4 m at $2.05 \mathrm{~g} / \mathrm{t}$ from 0 m incl. 1 m @ $2.8 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1090	AC	1	4	3	0.38	1.13		22 ZAAC1090: 3	3 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1090	AC	7	8	1	0.13	0.13		22 ZAAC1090: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 7 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1092	AC	10	16	6	0.21	1.27		88 ZAAC1092: 6	6m at $0.21 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1093	AC	4	5	1	0.10	0.10		39 ZAAC1093: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1093	AC	6	7	1	0.10	0.10		99 ZAAC1093: 1	1 m at 0.19/t from 6 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1093	AC	9	28	19	0.51	9.64		99 ZAAC1093: 1	19 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 9 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1093	$A C$	33	34	1	0.34	0.34		39 ZAAC1093: 1	1 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1094	AC	12	13	1	0.13	0.13		32 ZAAC1094: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1094	AC	15	17	2	0.20	0.41		32 ZAAC1094: 2	2 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1094	AC	19	24	5	0.40	2.01		32 ZAAC1094: 5	5 m at 0.4g/t from 19 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1095	AC	10	12	2	0.26	0.52		6 ZAAC1095: 2	2 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1095	AC	16	17	1	0.35	0.35		36 ZAAC1095: 1	1 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1095	AC	33	36	3	0.14	0.42		6 ZAAC1095: 3	3 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1099	AC	12	14	2	0.39	0.77		22 ZAAC1099: 2	2 m at $0.39 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1101	AC	2	3	1	1.17	1.17		20 ZAAC1101: 1	1 m at $1.17 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1103	AC	16	18	2	0.17	0.34		7 ZAAC1103: 2	2 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Mbasso	ZAAC1104	AC	0	3	3	0.13	0.40		51 ZAAC1104: 3	3 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1104	AC	9	14	5	0.57	2.85		51 ZAAC1104: 5	5 m at 0.57g/t from 9 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1104	AC	16	24	8	0.38	3.03		51 ZAAC1104: 8	8 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1105	AC	0	3	3	1.44	4.33		54 ZAAC1105: 3	3 m at 1.44g/t from 0 m incl. 1 m @ 4.18/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1105	AC	36	43	7	0.17	1.22		54 ZAAC1105: 7	7 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1105	AC	46	54	8	0.64	5.10		54 ZAAC1105: 8	8 m at $0.64 \mathrm{~g} / \mathrm{t}$ from 46 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1106	AC	10	21	11	0.21	2.26		7 ZAAC1106: 1	11 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1106	AC	24	38	14	0.28	3.87		77 ZAAC1106: 1	14 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 24 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1106	AC	43	47	4	1.12	4.49		7 ZAAC1106: 4	4 m at $1.12 \mathrm{~g} / \mathrm{t}$ from 43 m incl. $1 \mathrm{~m} @ 1.4 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1112	AC	25	28	3	22.49	67.47		54 ZAAC1112: 3	3 m at $22.49 \mathrm{~g} / \mathrm{t}$ from 25 m incl. 1 m @ $62.9 \mathrm{~g} / \mathrm{t}, 4.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1112	AC	48	51	3	0.44	1.31		54 ZAAC1112: 3	3m at $0.44 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1113	AC	3	4	1	0.46	0.46		55 ZAAC1113: 1	1 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1113	AC	45	47	2	1.52	3.04		55 ZAAC1113: 2	2 m at $1.52 \mathrm{~g} / \mathrm{t}$ from 45 m incl. $1 \mathrm{~m} @ 2.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1114	AC	0	3	3	0.20	0.60		8 ZAAC1114: 3	3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1114	AC	33	36	3	0.36	1.08		8 ZAAC1114: 3	3 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1120	AC	18	21	3	0.59	1.78		6 ZAAC1120: 3	3 m at $0.59 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1120	AC	23	24	1	0.19	0.19		6 ZAAC1120: 1	1 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1121	AC	40	54	14	0.73	10.28		58 ZAAC1121: 1	14 m at $0.73 \mathrm{~g} / \mathrm{t}$ from 40 m incl. $1 \mathrm{~m} @ 3.6 \mathrm{~g} / \mathrm{t}, 3.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1121	AC	56	58	2	0.74	1.49		58 ZAAC1121: 2	2 m at $0.74 \mathrm{~g} /$ from 56 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1122	AC	0	7	7	0.19	1.35		8 ZAAC1122: 7	7 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1122	AC	9	10	1	0.10	0.10		8 ZAAC1122: 1	1 m at 0.18/t from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1122	AC	13	23	10	0.22	2.15		8 ZAAC1122:	10m at $0.22 \mathrm{~g} /$ t from 13 m	1 m primary	$1 \mathrm{mc} / 0.1$
Mbasso	ZAAC1122	AC	27	38	11	0.36	3.92		8 ZAAC1122: 11	11m at 0.36g/t from 27 m incl. 1 m @ $1.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZAAC1124	AC	0	1	1	0.86	0.86		31 ZAAC1124: 1	1 m at $0.86 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0668	AC	44	47	3	0.15	0.45		1 ZAAC0668: 3	3 m at 0.15g/t from 44 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0670	AC	1	5	4	0.36	1.42		8 ZAAC0670: 4	4 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 1 m incl. 1 m @ $1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0670	AC	21	23	2	0.25	0.50		8 ZAAC0670: 2	2 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 21 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0671	AC	28	29	1	0.29	0.29		5 ZAAC0671: 1	1m at $0.29 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0671	AC	31	34	3	0.19	0.58		5 ZAAC0671: 3	3m at $0.19 \mathrm{~g} / \mathrm{t}$ from 31 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0671	AC	54	60	6	0.22	1.32		5 ZAAC0671: 6	. 6 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 54 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0672	AC	37	42	5	1.14	5.71		4 ZAAC0672: 5	5 m at $1.14 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 5.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0672	AC	45	46	1	0.52	0.52		4 ZAAC0672: 1	1m at $0.52 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0673	AC	56	57	1	0.13	0.13		60 ZAAC0673: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 56 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0674	AC	36	39	3	0.12	0.37		0 ZAAC0674: 3	3 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0674	AC	80	81	1	0.12	0.12		0 ZAAC0674: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 80 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0674	AC	83	84	1	0.61	0.61		90 ZAAC0674: 1	1 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 83 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0675	AC	68	69	1	1.83	1.83		69 ZAAC0675: 1	1 m at $1.83 \mathrm{~g} / \mathrm{t}$ from 68 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0676	AC	4	6	2	0.11	0.23		99 ZAAC0676: 2	2 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0676	AC	56	65	9	1.21	10.86		9 ZAAC0676: 9	9 m at $1.21 \mathrm{~g} / \mathrm{t}$ from 56 m incl. $1 \mathrm{~m} @ 5.8 \mathrm{~g} / \mathrm{t}, 1.8 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0676	AC	68	69	1	0.38	0.38		9 ZAAC0676: 1	1 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 68 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0678	AC	68	69	1	1.44	1.44		80 ZAAC0678: 1	1 m at $1.44 \mathrm{~g} / \mathrm{t}$ from 68 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0678	AC	71			0.11	0.11		80 ZAAC0678: 1	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 71 m	1 m primary	$1 \mathrm{mc/o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Coffee Bean	ZAAC0679	AC	1	4	3	0.19	0.58		1 ZAAC0679: 3	3 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0679	AC	6	8	2	0.42	0.83		1 ZAAC0679: 2	2 m at $0.42 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0679	AC	25	28	3	0.19	0.57		1 ZAAC0679: 3	3 m at 0.19g/t from 25 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0679	AC	76	80	4	0.26	1.06		1 ZAAC0679: 4	4 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0680	AC	54	55	1	0.27	0.27		87 ZAAC0680: 1	1 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 54 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0681	AC	46	48	2	0.51	1.03		5 ZAAC0681: 2	: 2 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0682	$A C$	10	12	2	0.23	0.45		5 ZAAC0682: 2	: 2 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 10 m	1m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0682	AC	14	15	1	0.12	0.12		5 ZAAC0682: 1	: 1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 14 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0682	AC	19	29	10	3.26	32.64		5 ZAAC0682: 1	10m at $3.26 \mathrm{~g} / \mathrm{t}$ from 19 m incl. $1 \mathrm{~m} @ 8.9 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}, 4.2 \mathrm{~g} / \mathrm{t}, 8.3 \mathrm{~g} / \mathrm{t}, 4$.	.1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0682	AC	31	35	4	0.15	0.58		5 ZAAC0682: 4	4m at $0.15 \mathrm{~g} / \mathrm{t}$ from 31 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0683	AC	81	83	2	0.48	0.96		7 ZAAC0683: 2	2 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 81 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0684	AC	50	51	1	0.14	0.14		63 ZAAC0684: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0693	AC	1	2	1	0.14	0.14		39 ZAAC0693: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0700	AC	52	59	7	0.17	1.19		80 ZAAC0700: 7	7 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0701	AC	57	58	1	0.13	0.13		87 ZAAC0701: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 57 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0701	AC	61	62	1	0.89	0.89		7 ZAAC0701: 1	1 m at $0.89 \mathrm{~g} / \mathrm{t}$ from 61 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0704	AC	0	1	1	0.11	0.11		63 ZAAC0704: 1	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0704	AC	3	4	1	0.15	0.15		63 ZAAC0704: 1	1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0704	AC	41	43	2	0.29	0.59		63 ZAAC0704: 2	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 41 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0708	AC	50	56	6	0.26	1.57		62 ZAAC0708: 6	6m at $0.26 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0709	AC	60	71	11	0.38	4.22		8 ZAAC0709: 1	11m at $0.38 \mathrm{~g} / \mathrm{t}$ from 60 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0710	AC	1	3	2	0.13	0.26		50 ZAAC0710: 2	2 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0710	AC	45	48	3	0.21	0.62		60 ZAAC0710: 3	3m at 0.21g/t from 45m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0711	AC	54	55	1	0.50	0.50		2 ZAAC0711: 1	1 m at $0.5 \mathrm{~g} / \mathrm{t}$ from 54 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0714	AC	3	4	1	0.37	0.37		56 ZAAC0714: 1	1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0715	AC	46	47	1	0.48	0.48		1 ZAAC0715: 1	1 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0719	AC	12	18	6	0.17	1.03		2 ZAAC0719: 6	6m at 0.17g/t from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0719	$A C$	23	24	1	0.35	0.35		2 ZAAC0719: 1	1 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0719	AC	56	59	3	0.48	1.45		2 ZAAC0719: 3	3 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 56 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0721	$A C$	3	4	1	1.96	1.96		6 ZAAC0721: 1	1 m at $1.96 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0721	$A C$	9	10	1	0.36	0.36		6 ZAAC0721: 1	1 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0721	AC	37	40	3	0.37	1.12		6 ZAAC0721: 3	3m at 0.37g/t from 37 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0721	AC	65	68	3	0.38	1.14		6 ZAAC0721: 3	3m at $0.38 \mathrm{~g} / \mathrm{t}$ from 65 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0724	AC	14	15	1	0.12	0.12		64 ZAAC0724: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 14 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0725	AC	52	57	5	0.19	0.93		57 ZAAC0725: 5	5 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0726	AC	10	11	1	0.24	0.24		4 ZAAC0726: 1	1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0726	AC	38	39	1	1.21	1.21		4 ZAAC0726: 1	1 m at $1.21 \mathrm{~g} / \mathrm{t}$ from 38 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0727	AC	2	3	1	0.16	0.16		8 ZAAC0727: 1	1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0728	AC	13	14	1	0.22	0.22		69 ZAAC0728: 1	1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0728	AC	26	27	1	0.31	0.31		69 ZAAC0728: 1	1 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 26 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0728	$A C$	31	32	1	0.24	0.24		69 ZAAC0728: 1	1 m at $0.24 \mathrm{~g} / \mathrm{t}$ from 31 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0730	AC	44	46	2	0.73	1.46		66 ZAAC0730: 2	2 m at $0.73 \mathrm{~g} / \mathrm{t}$ from 44 m incl. $1 \mathrm{~m} @ 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0730	AC	48	52	4	0.28	1.13		66 ZAAC0730: 4	4 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0730	AC	55	60	5	0.61	3.06		6 ZAAC0730: 5	5 m at 0.61g/t from 55 m incl. $1 \mathrm{~m} @ 1.6 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0731	AC	52	54	2	0.22	0.43		60 ZAAC0731: 2	2 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0733	AC	12	13	1	0.16	0.16		2 ZAAC0733: 1	1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0733	AC	20	21	1	0.35	0.35		2 ZAAC0733: 1	1 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 20 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0733	AC	45	48	3	1.03	3.08		2 ZAAC0733: 3	3 m at $1.03 \mathrm{~g} / \mathrm{t}$ from 45 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0733	AC	50	51	1	0.13	0.13		2 ZAAC0733: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0733	AC	52	53	1	0.12	0.12		2 ZAAC0733: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0736	AC	48	49	1	0.65	0.65		8 ZAAC0736: 1	1 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0736	AC	51	52	1	0.14	0.14		8 ZAAC0736: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 51 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0736	AC	57	63	6	0.14	0.85		88 ZAAC0736: 6	6m at 0.14g/t from 57m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0736	AC	65	70	5	0.77	3.85		8 ZAAC0736: 5	5 m at $0.77 \mathrm{~g} / \mathrm{t}$ from 65 m incl. 1 m @ $2.3 \mathrm{~g} / \mathrm{t}, 1.3 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0736	AC	73	75	2	0.16	0.32		8 ZAAC0736: 2	2 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 73 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0738	AC	37	38	1	0.98	0.98		5 ZAAC0738: 1	1 m at $0.98 \mathrm{~g} / \mathrm{t}$ from 37 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0740	AC	60	61	1	0.29	0.29		2 ZAAC0740: 1	1 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 60 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0740	AC	63	64	1	0.40	0.40		2 ZAAC0740: 1	1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 63 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0742	AC	1	2	1	0.71	0.71		1 ZAAC0742: 1	1 m at $0.71 \mathrm{~g} /$ t from 1 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0743	AC	33	34	1	0.88	0.88		60 ZAAC0743: 1	1 m at $0.88 \mathrm{~g} / \mathrm{t}$ from 33 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0744	AC	62	63	1	4.82	4.82		5 ZAAC0744: 1	1 m at $4.82 \mathrm{~g} / \mathrm{t}$ from 62 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0746	AC	1	2	1	2.01	2.01		3 ZAAC0746: 1	1 m at $2.01 \mathrm{~g} /$ t from 1 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0746	AC	45	47	2	0.41	0.82		3 ZAAC0746: 2	2 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0747	AC	50	51	1	0.27	0.27		55 ZAAC0747: 1	1m at $0.27 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0747	AC	55	56	1	0.63	0.63		55 ZAAC0747: 1	1 m at $0.63 \mathrm{~g} / \mathrm{t}$ from 55 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0747	AC	63	64	1	1.27	1.27		65 ZAAC0747: 1	1 m at $1.27 \mathrm{~g} / \mathrm{t}$ from 63 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0750	AC	13	15	2	0.33	0.66		59 ZAAC0750: 2	2 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0752	AC	22	23	1	0.17	0.17		63 ZAAC0752: 1	1m at $0.17 \mathrm{~g} / \mathrm{t}$ from 22 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0752	AC	52	56	4	0.11	0.46		63 ZAAC0752: 4	4m at 0.11g/t from 52 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0753	AC	6	7	1	0.33	0.33		69 ZAAC0753: 1	1 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0753	AC	18	20	2	0.14	0.29		69 ZAAC0753: 2	2 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0754	AC	16	21	5	0.25	1.26		1 ZAAC0754: 5	5 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 16 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0754	AC	24	26	2	0.28	0.56		1 ZAAC0754: 2	2 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 24 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0755	AC	41	42	1	2.31	2.31		55 ZAAC0755: 1	1 m at $2.31 \mathrm{~g} / \mathrm{t}$ from 41m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0757	AC	32	40	8	8.54	68.28		0 ZAAC0757: 8	8m at $8.54 \mathrm{~g} / \mathrm{t}$ from 32 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 7.1 \mathrm{~g} / \mathrm{t}, 1 \mathrm{~g} / \mathrm{t}, 11.3 \mathrm{~g} / \mathrm{t}, 38$.	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0758	AC	40	43	3	0.26	0.78		57 ZAAC0758: 3	3 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0760	AC	39	40	1	0.71	0.71		50 ZAAC0760: 1	1 m at 0.71g/t from 39m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0761	AC	6	7	1	0.25	0.25		5 ZAAC0761: 1	1 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0761	AC	35	36	1	0.53	0.53		5 ZAAC0761: 1	1 m at $0.53 \mathrm{~g} / \mathrm{t}$ from 35 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0762	AC	5		2	0.33	0.66		6 ZAAC0762: 2	2 m at $0.33 \mathrm{~g} /$ from 5 m	1 m primary	$1 \mathrm{mc/o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g / t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Coffee Bean	ZAAC0762	AC	30	31	1	0.27	0.27	56	6 ZAAC0762: 1	1 m at $0.27 \mathrm{~g} / \mathrm{t}$ from 30 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0763	AC	5	11	6	10.38	62.25		4 ZAAC0763: 6	mmat $10.38 \mathrm{~g} / \mathrm{t}$ from 5 m incl. 1 m @ 60.8g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0764	AC	0	4	4	0.26	1.05	58	8 ZAAC0764: 4	4 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0764	AC	37	38	1	0.47	0.47		8 ZAAC0764: 1	1 m at $0.47 \mathrm{~g} / \mathrm{t}$ from 37 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0765	AC	20	24	4	0.13	0.50		5 ZAAC0765: 4	4 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 20 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0765	AC	36	37	1	0.61	0.61		5 ZAAC0765: 1	1 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 36 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0767	AC	28	32	4	0.14	0.55		6 ZAAC0767: 4	4m at 0.14g/t from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0767	AC	39	40	1	0.52	0.52		6 ZAAC0767: 1	1 m at $0.52 \mathrm{~g} / \mathrm{t}$ from 39 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1144	AC	23	26	3	0.20	0.60		6 ZAAC1144: 3	3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZAAC1145	AC	8	13	5	0.28	1.38		5 ZAAC1145: 5	5 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 8 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1145	AC	15	17	2	0.22	0.45		5 ZAAC1145: 2	2m at $0.22 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1145	AC	19	20	1	0.17	0.17		5 ZAAC1145: 1	1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 19 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1151	AC	14	15	1	0.57	0.57		0 ZAAC1151: 1	1 m at $0.57 \mathrm{~g} / \mathrm{t}$ from 14 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1152	AC	28	32	4	0.73	2.93		9 ZAAC1152: 4	. 4 m at $0.73 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1152	AC	36	39	3	0.46	1.37		9 ZAAC1152: 3	3 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 36 m incl. 1 m @ 2.0g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1153	AC	12	14	2	0.29	0.58		9 ZAAC1153: 2	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1156	AC	8	12	4	0.20	0.81		4 ZAAC1156: 4	. 4 m at 0.2g/t from 8 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZAAC1157	RC	9	11	2	0.56	1.11		7 ZAAC1157: 2	2 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZAAC1160	RC	0	1	1	0.28	0.28		5 ZAAC1160: 1	1 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0078	RC	2	3	1	0.17	0.17		1 ZARC0078: 1	1 m at $0.17 \mathrm{~g} /$ t from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	5	12	7	0.31	2.19		1 ZARC0078: 7	7 m at $0.31 \mathrm{~g} / \mathrm{t}$ from 5 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	44	46	2	0.13	0.26		1 ZARC0078: 2	2m at $0.13 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	73	76	3	0.15	0.46		1 ZARC0078: 3	3 m at 0.15g/t from 73 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	104	107	3	0.17	0.50		1 ZARC0078: 3	3 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 104m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	124	125	1	0.15	0.15		1 ZARC0078: 1	1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 124 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	127	136	9	0.30	2.67		1 ZARC0078: 9	9m at $0.3 \mathrm{~g} / \mathrm{t}$ from 127 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	139	143	4	0.19	0.75		1 ZARC0078: 4	4 m at 0.19g/t from 139 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	145	148	3	0.15	0.46		1 ZARC0078: 3	3 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 145 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0078	RC	156	157	1	0.11	0.11		1 ZARC0078: 1	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 156 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0082	RC	1	4	3	0.81	2.44	145	5 ZARC0082: 3	3m at 0.81g/t from 1 m incl. $1 \mathrm{~m} @ 2.1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0082	RC	10	11	1	0.11	0.11		5 ZARC0082: 1	: 1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 10 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0082	RC	13	16	3	0.18	0.54	145	5 ZARC0082: 3	: 3 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0082	RC	18	26	8	0.86	6.88	145	5 ZARC0082: 8	: 8 m at $0.86 \mathrm{~g} / \mathrm{t}$ from 18 m incl. $1 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 4.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0082	RC	42	43	1	0.10	0.10	145	5 ZARC0082: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0082	RC	45	46	1	0.24	0.24	145	5 ZARC0082: 1	1m at $0.24 \mathrm{~g} / \mathrm{t}$ from 45 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0084	RC	0	3	3	0.61	1.84		3 ZARC0084: 3	3 m at $0.61 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0094	RC	0	4	4	0.42	1.70	200	0 ZARC0094: 4	4 m at $0.42 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0094	RC	48	53	5	0.35	1.73		0 ZARC0094: 5	5 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 48 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0094	RC	76	77	1	0.71	0.71	200	0 ZARC0094: 1	1 m at $0.71 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0094	RC	79	80	1	1.30	1.30		0 ZARC0094: 1	1 m at $1.3 \mathrm{~g} / \mathrm{t}$ from 79 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0094	RC	93	95	2	0.15	0.29	200	0 ZARC0094: 2	2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 93 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0096	RC	0	2	2	0.29	0.57		7 ZARC0096: 2	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	70	82	12	1.58	18.93		7 ZARC0096: 1	12 m at $1.58 \mathrm{~g} / \mathrm{t}$ from 70 m incl. $1 \mathrm{~m} @ 16.7 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	101	102	- 1	4.04	4.04		7 ZARC0096: 1	1 m at $4.04 \mathrm{~g} /$ t from 101 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	107	113	6	0.26	1.57		7 ZARC0096: 6	6 m at $0.26 \mathrm{~g} / \mathrm{t}$ from 107 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	115	116	1	0.10	0.10		7 ZARC0096: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 115 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	117	124	7	0.33	2.28		7 ZARC0096: 7	7 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 117 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0096	RC	126	127	1	0.22	0.22		7 ZARC0096: 1	1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 126 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	129	130	1	0.13	0.13		7 ZARC0096: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 129 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0096	RC	132	134	2	0.18	0.36		7 ZARC0096: 2	2 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 132 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0096	RC	145	146	1	3.52	3.52		7 ZARC0096: 1	1 m at $3.52 \mathrm{~g} / \mathrm{t}$ from 145 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	0	1	1	0.14	0.14	204	ZARC0098: 1	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	12	13	1	0.16	0.16		4 ZARC0098: 1	1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 12 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	15	16	1	0.12	0.12	204	4 ZARC0098: 1	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0098	RC	46	47	1	0.37	0.37		4 ZARC0098: 1	1 m at $0.37 \mathrm{~g} / \mathrm{t}$ from 46 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	50	51	1	0.10	0.10		4 ZARC0098: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 50 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	53	58	5	0.22	1.10		4 ZARC0098: 5	5 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 53 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0098	RC	65	66	1	0.11	0.11		4 ZARC0098: 1	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 65 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0098	RC	192	193	1	0.33	0.33		4 ZARC0098: 1	1 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 192 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0100	RC	0	3	3	0.25	0.76		4 ZARC0100: 3	3 m at $0.25 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO100	RC	127	146	19	7.11	135.13		4 ZARC0100: 1	19 m at $7.11 \mathrm{~g} / \mathrm{t}$ from 127 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}, 6.3 \mathrm{~g} / \mathrm{t}, 1.6 \mathrm{~g} / \mathrm{t}, 2.5 \mathrm{~g} / \mathrm{t}$,	.1m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO100	RC	150	151	1	0.36	0.36		4 ZARC0100: 1	1 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 150 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO100	RC	156	158	2	0.15	0.30		4 ZARC0100: 2	2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 156 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARCO100	RC	172	178	6	0.18	1.10		4 ZARC0100: 6	6m at $0.18 \mathrm{~g} / \mathrm{t}$ from 172 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO100	RC	187	189	2	0.48	0.96	204	4 ZARC0100: 2	2 m at $0.48 \mathrm{~g} / \mathrm{t}$ from 187 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO100	RC	191	192	1	1.19	1.19		4 ZARC0100: 1	1 m at $1.19 \mathrm{~g} / \mathrm{t}$ from 191m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARCO100	RC	194	203	9	0.33	2.93		4 ZARC0100: 9	9m at 0.33g/t from 194m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0110	RC	149	151	2	0.40	0.81		0 ZARC0110: 2	2 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 149 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0114	RC	100	101	1	0.35	0.35		2 ZARC0114: 1	1 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 100 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0118	RC	76	77	1	0.10	0.10		0 ZARC0118: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 76 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0118	RC	84	85	1	0.22	0.22		0 ZARC0118: 1	1 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 84 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0118	RC	87	88	1	0.11	0.11		0 ZARC0118: 1	1m at 0.11g/t from 87 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO120	RC	194	196	2	0.18	0.36		2 ZARC0120: 2	2 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 194 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO122	RC	86	87	1	0.39	0.39		0 ZARC0122: 1	1 m at $0.39 \mathrm{~g} / \mathrm{t}$ from 86 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0122	RC	90	91	1	0.13	0.13		0 ZARC0122: 1	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 90 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO122	RC	94	96	2	0.17	0.35		0 ZARCO122: 2	2m at 0.17g/t from 94 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0122	RC	121	124	3	0.23	0.70		0 ZARC0122: 3	3m at 0.23g/t from 121m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO122	RC	171	172	1	3.26	3.26		0 ZARC0122: 1	1m at $3.26 \mathrm{~g} / \mathrm{t}$ from 171 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARCO123	RC	71	72	1	0.45	0.45		0 ZARC0123: 1	1 m at $0.45 \mathrm{~g} / \mathrm{t}$ from 71 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0123	RC	77		2	0.38	0.76		0 ZARC0123: 2	2 m at $0.38 \mathrm{~g} / \mathrm{t}$ from 77 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \mathrm{m} \\ & \hline \end{aligned}$	Interval m	Grade g / t	gxm	End of Hole m	Intersection		Sample type	Int. Dilution
Yakasse	ZARC0123	RC	82	96	14	0.51	7.14	200	ZARC0123:	14 m at $0.51 \mathrm{~g} / \mathrm{t}$ from 82 m incl. 1 m @ $1.4 \mathrm{~g} / \mathrm{t}, 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0123	RC	156	158	2	0.20	0.41	200	OARCO123:	2 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 156 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0123	RC	165	167	2	0.21	0.41	200	ZARC0123:	2 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 165 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0124	RC	178	183	5	0.42	2.10	200	OARCO124:	5m at 0.42g/t from 178 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Yakasse	ZARC0126	RC	114	116	2	0.29	0.58	206	6 ZARC0126:	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 114 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0126	RC	132	136	4	0.56	2.23		6 ZARCO126:	4 m at $0.56 \mathrm{~g} / \mathrm{t}$ from 132 m incl. 1 m @ $1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0126	RC	140	146	6	0.54	3.25		6 ZARC0126:	6 m at 0.54g/t from 140 m incl. 1 m @ 2.1g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0126	RC	150	156	6	0.36	2.13	206	6 ZARC0126:	6m at $0.36 \mathrm{~g} / \mathrm{t}$ from 150 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0126	RC	159	162	3	2.05	6.16		6 ZARC0126:	3 m at $2.05 \mathrm{~g} / \mathrm{t}$ from 159 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0126	RC	164	167	3	0.43	1.28	206	6 ZARCO126:	3 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 164 m incl. 1 m @ $1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0126	RC	204	205	1	0.15	0.15		6 ZARCO126:	1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 204 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Yakasse	ZARC0130	RC	82	83	1	0.41	0.41	206	6 ZARCO130:	1 m at $0.41 \mathrm{~g} / \mathrm{t}$ from 82 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0130	RC	111	112	1	0.60	0.60	206	6 ZARC0130:	1 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 111 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0130	RC	133	134	1	0.65	0.65	206	6 ZARCO130:	1 m at $0.65 \mathrm{~g} / \mathrm{t}$ from 133 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0130	RC	161	164	3	0.17	0.52		6 ZARC0130:	3 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 161 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0131	RC	164	168	4	0.12	0.47		ZARC0131:	. 4 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 164 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0131	RC	183	184	1	0.48	0.48	200	OARC0131:	1m at $0.48 \mathrm{~g} / \mathrm{t}$ from 183 m	1 m primary	$1 \mathrm{mc} / 00.1$
Yakasse	ZARC0131	RC	186	190	4	0.13	0.50		ZARC0131:	4m at 0.13g/t from 186 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0131	RC	192	196	4	0.33	1.33	200	0 ZARC0131:	. 4 m at $0.33 \mathrm{~g} / \mathrm{t}$ from 192 m	1 m primary	$1 \mathrm{mc} / 0.1$
Yakasse	ZARC0132	RC	137	140	3	0.14	0.43		ZARC0132:	. 3 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 137 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0132	RC	142	143	1	0.54	0.54		OARC0132:	. 1 m at $0.54 \mathrm{~g} / \mathrm{t}$ from 142 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0132	RC	169	170	1	0.20	0.20		OARC0132:	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 169 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Yakasse	ZARC0132	RC	192	196	4	0.13	0.53		0 ZARCO132:	. 4 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 192 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0595	AC	25	27	2	0.60	1.20		3 ZAACO595:	2 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 25 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0596	AC	18	20	2	0.36	0.71		3 ZAACO596:	2 m at $0.36 \mathrm{~g} / \mathrm{t}$ from 18 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0599	AC	1	2	1	0.15	0.15		7 ZAACO599:	1 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 1 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0599	$A C$	28	30	2	0.14	0.27		7 ZAAC0599:	2 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0599	$A C$	32	36	4	0.16	0.63		7 ZAAC0599:	4m at $0.16 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0600	AC	0	20	20	0.39	7.86		7 ZAACO600:	20m at $0.39 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}, 1.4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0600	AC	23	32	9	0.20	1.77		7 ZAAC0600:	9m at $0.2 \mathrm{~g} / \mathrm{t}$ from 23 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC0608	AC	41	42	1	0.11	0.11		8 ZAAC0608:	1 m at $0.11 \mathrm{~g} / \mathrm{t}$ from 41 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC0608	AC	44	45	1	0.13	0.13		8 ZAAC0608:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 44 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0608	AC	53	54	1	0.60	0.60		8 ZAAC0608:	1 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 53 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0609	AC	13	14	1	0.14	0.14		1 ZAAC0609:	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 13 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0609	AC	21	26	5	0.21	1.03		1 ZAAC0609:	5 m at $0.21 \mathrm{~g} / \mathrm{t}$ from 21 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0609	AC	51	56	5	0.23	1.15		1 ZAAC0609:	5 m at $0.23 \mathrm{~g} / \mathrm{t}$ from 51 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Ebilassokro	ZAAC0611	AC	26	28	2	0.29	0.57		7 ZAAC0611:	2 m at $0.29 \mathrm{~g} / \mathrm{t}$ from 26 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0612	AC	2	4	2	0.20	0.40		1 ZAAC0612:	2m at $0.2 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0612	AC	48	51	3	2.50	7.51		1 ZAAC0612:	. 3 m at $2.5 \mathrm{~g} / \mathrm{t}$ from 48 m incl. $1 \mathrm{~m} @ 6.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0613	AC	3	4	1	0.14	0.14		9 ZAAC0613:	1 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0631	$A C$	32	38	6	0.35	2.08		0 ZAAC0631:	6m at $0.35 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC0631	AC	41	44	3	0.72	2.15		0 ZAAC0631:	3m at 0.72 $/$ /t from 41 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0632	AC	37	42	5	2.99	14.95		6 ZAAC0632:	5m at $2.99 \mathrm{~g} / \mathrm{t}$ from 37 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}, 11.6 \mathrm{~g} / \mathrm{t}, 1.9 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0633	AC	2	4	2	0.54	1.08		6 ZAAC0633:	2m at $0.54 \mathrm{~g} / \mathrm{t}$ from 2 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0635	AC	9	15	6	0.21	1.24		7 ZAAC0635:	: 6 m at 0.21g/t from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0636	AC	58	59	1	0.16	0.16		1 ZAAC0636:	1 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 58 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0652	AC	28	29	1	0.12	0.12		4 ZAAC0652:	1 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC0653	AC	56	57	1	0.13	0.13		7 ZAAC0653:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 56 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0655	AC	17	20	3	0.15	0.44		4 ZAAC0655:	3 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0656	AC	4	5	1	0.52	0.52		6 ZAAC0656:	1m at 0.52g/t from 4 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0656	AC	7	8	1	0.84	0.84		6 ZAAC0656:	1m at 0.84g/t from 7m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0656	AC	35	36	1	3.37	3.37		6 ZAAC0656:	1 m at $3.37 \mathrm{~g} / \mathrm{t}$ from 35 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0656	AC	49	50	1	0.27	0.27		6 ZAAC0656:	1 m at $0.27 \mathrm{~g} /$ t from 49 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC0658	AC	4	13	9	0.24	2.15		6 ZAAC0658:	9m at 0.24g/t from 4 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC0659	AC	0	6	6	0.40	2.39		1 ZAAC0659:	6m at 0.4g/t from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1126	AC	0	25	25	0.28	7.00		3 ZAAC1126:	25 m at $0.28 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1126	AC	27	33	6	0.19	1.12		3 ZAAC1126:	6 m at $0.19 \mathrm{~g} / \mathrm{t}$ from 27 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1127	AC	4	5	1	0.43	0.43		2 ZAAC1127:	. 1 m at $0.43 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc} / 0.1$
Ebilassokro	ZAAC1128	AC	21	28	7	0.17	1.18		0 ZAAC1128:	7 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 21 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1131	AC	6	11	5	0.15	0.75		6 ZAAC1131:	5m at 0.15g/t from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1133	AC	4	5	1	0.57	0.57		9 ZAAC1133:	1 m at $0.57 \mathrm{~g} / \mathrm{t}$ from 4 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1138	AC	6	7	1	0.34	0.34		0 ZAAC1138:	1 m at $0.34 \mathrm{~g} / \mathrm{t}$ from 6 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ebilassokro	ZAAC1138	AC	9	10	1	0.40	0.40		ZAAC1138:	1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 9 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0770	AC	0	5	5	0.54	2.68		3 ZAAC0770:	. 5 m at 0.54g/t from 0 m incl. $1 \mathrm{~m} @ 1 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0770	AC	24	28	4	0.14	0.57		3 ZAAC0770:	4 m at $0.14 \mathrm{~g} / \mathrm{t}$ from 24 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0776	AC	24	27	3	1.48	4.44		7 ZAAC0776:	3m at $1.48 \mathrm{~g} / \mathrm{t}$ from 24 m incl. $1 \mathrm{~m} @ 4 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0782	AC	47	49	2	0.22	0.44		2 ZAAC0782:	2 m at $0.22 \mathrm{~g} / \mathrm{t}$ from 47 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0782	AC	51	52	1	0.43	0.43		2 ZAAC0782:	1m at $0.43 \mathrm{~g} / \mathrm{t}$ from 51 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0782	AC	55	56	1	0.77	0.77		2 ZAAC0782:	1 m at $0.77 \mathrm{~g} / \mathrm{t}$ from 55 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0783	AC	17	24	7	6.33	44.30		0 ZAAC0783:	. 7 m at $6.33 \mathrm{~g} / \mathrm{t}$ from 17 m incl. $1 \mathrm{~m} @ 38.2 \mathrm{~g} / \mathrm{t}, 5.2 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0783	AC	32	33	1	0.86	0.86		0 ZAAC0783:	1 m at $0.86 \mathrm{~g} / \mathrm{t}$ from 32 m	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0783	AC	41	43	2	0.16	0.32		0 ZAAC0783:	2 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 41 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0785	AC	15	16	1	0.13	0.13		3 ZAAC0785:	1 m at $0.13 \mathrm{~g} / \mathrm{t}$ from 15 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0785	AC	40	41	1	0.18	0.18		3 ZAAC0785:	1 m at $0.18 \mathrm{~g} / \mathrm{t}$ from 40 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0788	AC	10	16	6	1.16	6.93		3 ZAAC0788:	6 m at $1.16 \mathrm{~g} / \mathrm{t}$ from 10 m incl. $1 \mathrm{~m} @ 2.4 \mathrm{~g} / \mathrm{t}, 2.8 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0788	AC	18	37	19	2.82	53.56		3 ZAAC0788:	19 m at $2.82 \mathrm{~g} / \mathrm{t}$ from 18 m incl. 1 m @ $3.3 \mathrm{~g} / \mathrm{t}, 5.1 \mathrm{~g} / \mathrm{t}, 36 \mathrm{~g} / \mathrm{t}, 2.4 \mathrm{~g} / \mathrm{t}, 4.1$	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0788	AC	46	48	2	0.95	1.89		3 ZAAC0788:	2 m at 0.95g/t from 46 m incl. 1 m @ 1.2g/t	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0789	AC	0	1	1	0.20	0.20		6 ZAAC0789:	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0789	AC	3	9	6	0.39	2.33		6 ZAAC0789:	. 6 m at $0.39 \mathrm{~g} / \mathrm{t}$ from 3 m incl. $1 \mathrm{~m} @ 1.5 \mathrm{~g} / \mathrm{t}$	1 m primary	$1 \mathrm{mc} / 0.1$
Coffee Bean	ZAAC0790	AC	34	37	3	0.29	0.88		9 ZAAC0790:	3 m at 0.29g/t from 34m	1m primary	$1 \mathrm{mc/o} 0.1$

Prospect	Hole_ID	Drill Type	$\begin{gathered} \text { From } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { m } \end{aligned}$	Interval m	Grade g/t	gxm	End of Hole m	Intersection	Sample type	Int. Dilution
Coffee Bean	ZAAC0791	AC	60	63	3	3.55	10.66	87	ZAAC0791: 3 m at $3.55 \mathrm{~g} / \mathrm{t}$ from 60m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0792	AC	52	54	2	0.54	1.08	87	ZAAC0792: 2 m at $0.54 \mathrm{~g} / \mathrm{t}$ from 52 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0793	AC	42	44	2	0.35	0.70	82	ZAAC0793: 2 m at $0.35 \mathrm{~g} / \mathrm{t}$ from 42 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0794	AC	0	1	1	0.10	0.10	66	ZAAC0794: 1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 0 m	1 m primary	$1 \mathrm{mc/o} 0.1$
Coffee Bean	ZAAC0794	AC	3	4	1	0.17	0.17	66	ZAAC0794: 1 m at $0.17 \mathrm{~g} / \mathrm{t}$ from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0794	AC	53	59	6	0.46	2.75		ZAAC0794: 6 m at $0.46 \mathrm{~g} / \mathrm{t}$ from 53 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0795	AC	15	16	1	1.96	1.96		ZAAC0795: 1 m at 1.96g/t from 15m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0795	AC	77	79	2	0.15	0.31	87	ZAAC0795: 2 m at $0.15 \mathrm{~g} / \mathrm{t}$ from 77 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0796	AC	84	85	1	0.58	0.58	87	ZAAC0796: 1 m at $0.58 \mathrm{~g} / \mathrm{t}$ from 84 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0797	AC	3	4	1	0.12	0.12		ZAAC0797: 1 m at 0.12g/t from 3 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0797	AC	34	35	1	0.92	0.92	75	ZAAC0797: 1 m at $0.92 \mathrm{~g} / \mathrm{t}$ from 34 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0797	AC	38	42	4	0.20	0.82		ZAAC0797: 4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 38 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0798	AC	17	24	7	0.16	1.15		ZAAC0798: 7 m at $0.16 \mathrm{~g} / \mathrm{t}$ from 17 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$
Coffee Bean	ZAAC0798	AC	28	31	3	0.12	0.37		ZAAC0798: 3 m at $0.12 \mathrm{~g} / \mathrm{t}$ from 28 m	1 m primary	$1 \mathrm{mc} / \mathrm{o} 0.1$

Appendix 2: Final Fourth Phase DD drilling intersections reported at a $0.1 \mathrm{~g} / \mathrm{t}$ cut-off and maximum 1 m of internal dilution:

Prospect	Hole_ID	Drill Typ-r	From_1-	To_m ${ }^{\text {- }}$	Grade_g/ -	gxm	EOH	Interval_ - Intersection		Sample typ -	Int. Dilutio -
Mbasso	ZADD0004	DD	1.1	7.5	0.25	1.60	201.3	6.4 ZADD0004: 6.	6.4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 1.1 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	9.5	15.5	0.32	1.90	201.3	6 ZADD0004: 6	6 m at 0.3g/t from 9.5m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	19.5	20.5	0.13	0.13	201.3	1 ZADD0004: 1	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 19.5 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	22	22.5	0.10	0.05	201.3	0.5 ZADD0004: 0	0.5 m at 0.1g/t from 22 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	40.5	41	0.17	0.08	201.3	0.5 ZADD0004: 0	0.5 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 40.5 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	45.5	46.5	0.12	0.12	201.3	1 ZADD0004:	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 45.5 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	54.5	55.5	0.44	0.44	201.3	1 ZADD0004:	1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 54.5 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	71	73.9	0.10	0.29	201.3	2.9 ZADD0004:	2.9 m at $0.1 \mathrm{~g} /$ t from 71 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	79	81.8	0.35	0.97	201.3	2.8 ZADD0004:	2.8 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 79 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	84	86	0.19	0.38	201.3	2 ZADD0004: 2	2 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 84 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	92.25	95.2	0.33	0.97	201.3	2.95 ZADD0004:	3 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 92.25 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	97	99.7	0.33	0.88	201.3	2.7 ZADD0004:	2.7 m at $0.3 \mathrm{~g} /$ t from 97 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	100.9	101.3	3.80	1.52	201.3	0.4 ZADD0004: 0	0.4 m at $3.8 \mathrm{~g} / \mathrm{t}$ from 100.9 m incl. $0.4 \mathrm{~m} @ 3.8 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	102.4	126	0.94	22.16	201.3	23.6 ZADD0004:	23.6 m at $0.9 \mathrm{~g} / \mathrm{t}$ from 102.4 m incl. $0.62 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}, 0.88 \mathrm{~m} @ 1.9 \mathrm{~g} / \mathrm{t}$, 1r	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	132	133	0.19	0.19	201.3	1 ZADD0004:	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 132 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	135	151	0.55	8.87	201.3	16 ZADD0004:	16 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 135 m incl. 0.4 m @ 1.4g/t, 0.63 m @ 2.6g/t, 0.5 m ¢	¢Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	154	156	0.13	0.26	201.3	2 ZADD0004:	2 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 154 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0004	DD	167.25	168.18	0.11	0.11	201.3	0.93 ZADD0004: 0	0.9 m at 0.19/t from 167.25 m	Prim	$1 \mathrm{mc} / 0.1$
Mbasso	ZADD0004	DD	198	198.55	3.13	1.72	201.3	0.55 ZADD0004: 0.	0.6 m at $3.1 \mathrm{~g} / \mathrm{t}$ from 198 m	Prim	$1 \mathrm{mc} / 0.1$
Mbasso	ZADD0004	DD	200	200.6	0.10	0.06	201.3	0.6 ZADD0004: 0	0.6 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 200 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	0	1.3	0.23	0.30	204.26	1.3 ZADD0005:	1.3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 0 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	44	54	0.22	2.15	204.26	10 ZADD0005:	10 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 44 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	57.1	64.7	0.33	2.54	204.26	7.6 ZADD0005: 7	7.6 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 57.1 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	66.65	69.65	0.14	0.41	204.26	3 ZADD0005: 3	3 m at 0.1g/t from 66.65 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	89.7	93.7	0.23	0.91	204.26	4 ZADD0005: 4	4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 89.7 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	95.4	96.4	0.24	0.24	204.26	1 ZADD0005:	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 95.4 m	Prim	$1 \mathrm{mc} / 0.1$
Mbasso	ZADD0005	DD	106.5	107.55	0.11	0.12	204.26	1.05 ZADD0005:	1.1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 106.5 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	114.55	115.55	0.11	0.11	204.26	1 ZADD0005:	1 m at $0.1 \mathrm{~g} /$ t from 114.55 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	134.1	134.6	0.54	0.27	204.26	0.5 ZADD0005: 0	0.5 m at $0.5 \mathrm{~g} / \mathrm{t}$ from 134.1 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	147.65	148.65	0.37	0.37	204.26	1 ZADD0005: 1	1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 147.65 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	152.6	153.6	0.21	0.21	204.26	1 ZADD0005: 1	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 152.6 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	159.7	162.7	0.15	0.45	204.26	3 ZADD0005: 3	3 m at 0.1g/t from 159.7 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	166.49	167.1	0.61	0.37	204.26	0.61 ZADD0005: 0	0.6m at 0.6g/t from 166.49 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	169	170.67	1.59	2.65	204.26	1.67 ZADD0005: 1.	1.7 m at $1.6 \mathrm{~g} /$ t from 169 m incl. 1 m @ 2.5g/t	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0005	DD	177.3	179.3	1.07	2.15	204.26	2 ZADD0005: 2	2 m at $1.1 \mathrm{~g} / \mathrm{t}$ from 177.3 m incl. $1 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0006	DD	15.36	18.3	0.75	2.19	205.94	2.94 ZADD0006:	2.9 m at $0.7 \mathrm{~g} / \mathrm{t}$ from 15.36 m incl. $0.94 \mathrm{~m} @ 2 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / 00.1$
Mbasso	ZADD0006	DD	20.3	22.3	1.34	2.69	205.94	2 ZADD0006:	2 m at 1.3g/t from 20.3m incl. 1 m @ 2.7g/t	Prim	$1 \mathrm{mc} / 0.1$
Mbasso	ZADD0006	DD	27.3	28.3	0.22	0.22	205.94	1 ZADD0006: 1	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 27.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0006	DD	30.3	31.3	0.18	0.18	205.94	1 ZADD0006: 1	1 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 30.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0006	DD	43.3	44.3	0.44	0.44	205.94	1 ZADDOO06:	1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 43.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0006	DD	57	60	0.16	0.48	205.94	3 ZADD0006: 3	3 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 57 m	Prim	$1 \mathrm{mc} / 0.1$
Mbasso	ZADD0006	DD	64	65	0.11	0.11	205.94	1 ZADD0006:	1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 64 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Mbasso	ZADD0006	DD	82.92	85.9	1.73	5.16	205.94	2.98 ZADD0006: 3	3 m at $1.7 \mathrm{~g} / \mathrm{t}$ from 82.92 m incl. 1.08 m @ 4.4g/t	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	44.2	45.15	0.39	0.37	252.1	0.95 ZADD0007: 0	0.9 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 44.2 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	48.2	49	0.20	0.16	252.1	0.8 ZADD0007: 0	0.8m at $0.2 \mathrm{~g} / \mathrm{t}$ from 48.2 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	55.65	56.45	0.10	0.08	252.1	0.8 ZADD0007: 0.8	0.8m at $0.1 \mathrm{~g} /$ t from 55.65 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	65	65.85	0.15	0.13	252.1	0.85 ZADD0007: 0.8	0.8m at 0.2g/t from 65 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	71.1	75.5	0.83	3.64	252.1	4.4 ZADD0007: 4.	4.4m at $0.8 \mathrm{~g} / \mathrm{t}$ from 71.1 m incl. $0.9 \mathrm{~m} @ 3.6 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	78.8	79.35	0.11	0.06	252.1	0.55 ZADD0007: 0.	0.5 m at 0.1g/t from 78.8 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	83	84	0.13	0.13	252.1	1 ZADD0007: 1	1m at $0.1 \mathrm{~g} / \mathrm{t}$ from 83 m	Prim	$1 \mathrm{mc} / 00.1$
Ehuasso	ZADD0007	DD	94	95	0.24	0.24	252.1	1 ZADD0007: 1	1m at $0.2 \mathrm{~g} / \mathrm{t}$ from 94 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0007	DD	104.1	105.55	0.33	0.48	252.1	1.45 ZADD0007: 1.	1.5m at $0.3 \mathrm{~g} / \mathrm{t}$ from 104.1 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	109.75	110.45	0.12	0.09	252.1	0.7 ZADD0007: 0.7	0.7m at 0.1g/t from 109.75 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	116.2	116.95	0.76	0.57	252.1	0.75 ZADD0007: 0.8	0.8m at 0.8g/t from 116.2 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	124.6	126.4	2.86	5.15	252.1	1.8 ZADD0007: 1	1.8m at $2.9 \mathrm{~g} /$ t from 124.6 m incl. 0.35 m @ $13.7 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	127.85	128.8	17.86	16.96	252.1	0.95 ZADD0007: 1	1 m at $17.9 \mathrm{~g} / \mathrm{t}$ from 127.85 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	129.85	131.65	0.49	0.88	252.1	1.8 ZADD0007:	1.8 m at $0.5 \mathrm{~g} /$ t from 129.85 m incl. 0.45 m @ 1.1g/t	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0007	DD	135.1	136.1	0.46	0.46	252.1	1 ZADD0007:	1 m at $0.5 \mathrm{~g} / \mathrm{t}$ from 135.1 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	138.1	140	0.97	1.84	252.1	1.9 ZADD0007:	1.9 m at $1 \mathrm{~g} / \mathrm{t}$ from 138.1 m incl. $0.9 \mathrm{~m} @ 1.9 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	198	199.6	0.17	0.28	252.1	1.6 ZADD0007:	1.6 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 198 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	208.7	209.8	1.15	1.27	252.1	1.1 ZADD0007:	1.1m at $1.2 \mathrm{~g} /$ t from 208.7 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	211.8	212.8	0.11	0.11	252.1	1 ZADD0007: 1	1m at 0.1g/t from 211.8 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	216.4	217.3	0.20	0.18	252.1	0.9 ZADD0007: 0	0.9 m at $0.2 \mathrm{~g} /$ t from 216.4 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0007	DD	220.3	221	0.15	0.10	252.1	0.7 ZADD0007: 0	0.7 m at $0.1 \mathrm{~g} /$ t from 220.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$

Cont.

Prospect	- Hole_ID -1	Drill Typ-7	From_1-	To_m ${ }^{\text {- }}$	Grade_g/ -	gxm	EOH -	Interval_ Intersection	- Sample typ -	Int. Dilutio -
Ehuasso	ZADD0008	DD	0	7.3	0.35	2.55	201.3	7.3 ZADD0008: 7.3 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 0 m incl. $1 \mathrm{~m} @ 1.0 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0008	DD	12.3	16.3	0.23	0.91	201.3	4 ZADDO008: 4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 12.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0008	DD	20.3	21.3	0.13	0.13	201.3	1 ZADDO008: 1 m at 0.1g/t from 20.3 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	22.52	26.3	0.16	0.60	201.3	3.78 ZADD0008: 3.8 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 22.52 m	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0008	DD	28.3	31.3	0.14	0.42	201.3	3 ZADD0008: 3 m at 0.1g/t from 28.3 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	57.8	61	0.24	0.77	201.3	3.2 ZADD0008: 3.2 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 57.8 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0008	DD	70.9	72	0.11	0.12	201.3	1.1 ZADDO008: 1.1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 70.9 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0008	DD	80.7	82.4	0.20	0.35	201.3	1.7 ZADDO008: 1.7 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 80.7 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0008	DD	100.7	102.7	0.63	1.27	201.3	2 ZADDOO08: 2 m at $0.6 \mathrm{~g} / \mathrm{t}$ from 100.7 m incl. $1 \mathrm{~m} @ 1.1 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0008	DD	104.8	105.8	0.27	0.27	201.3	1 ZADD0008: 1 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 104.8 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	110.8	111.8	0.31	0.31	201.3	1 ZADDO008: 1 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 110.8 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	116	126	0.16	1.63	201.3	10 ZADDOOO8: 10 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 116 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	127.15	128.2	0.10	0.11	201.3	1.05 ZADD0008: 1 m at 0.1g/t from 127.15 m	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0008	DD	135.8	136.8	0.39	0.39	201.3	1 ZADDOOO8: 1 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 135.8 m	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0008	DD	138	139.6	1.43	2.28	201.3	1.6 ZADD0008: 1.6 m at $1.4 \mathrm{~g} / \mathrm{t}$ from 138 m incl. $1 \mathrm{~m} @ 2.2 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	142.45	143.34	0.14	0.13	201.3	0.89 ZADD0008: 0.9 m at $0.1 \mathrm{~g} /$ t from 142.45 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0008	DD	145.75	148.6	0.65	1.85	201.3	2.85 ZADD0008: 2.8 m at $0.7 \mathrm{~g} / \mathrm{t}$ from 145.75 m incl. 0.75 m @ $2.1 \mathrm{~g} / \mathrm{t}$	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0009	DD	0	2.8	0.32	0.90	201.1	2.8 ZADD0009: 2.8 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 0 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	12.8	13.8	0.10	0.10	201.1	1 ZADD0009: 1 m at 0.1g/t from 12.8 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0009	DD	16.3	17.3	0.12	0.12	201.1	1 ZADD0009: 1 m at $0.1 \mathrm{~g} / \mathrm{t}$ from 16.3 m	Prim	$1 \mathrm{mc} / \mathrm{o} 0.1$
Ehuasso	ZADD0009	DD	26.2	27	0.18	0.14	201.1	0.8 ZADD0009: 0.8 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 26.2 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	35	37	0.34	0.68	201.1	2 ZADD0009: 2 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 35 m	Prim	$1 \mathrm{mc/o} 0.1$
Ehuasso	ZADD0009	DD	38.75	40.3	0.17	0.27	201.1	1.55 ZADD0009: 1.6 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 38.75 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	47.55	48	0.29	0.13	201.1	0.45 ZADD0009: 0.5 m at $0.3 \mathrm{~g} / \mathrm{t}$ from 47.55 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	49.45	52.6	0.18	0.56	201.1	3.15 ZADD0009: 3.2 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 49.45 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	53.8	71.3	0.41	7.17	201.1	17.5 ZADD0009: 17.5 m at 0.4g/t from 53.8 m incl. 1 m @ 1.3g/t	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	73	75.1	0.23	0.48	201.1	2.1 ZADD0009: 2.1 m at $0.2 \mathrm{~g} /$ t from 73m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	76.6	89	0.24	2.95	201.1	12.4 ZADD0009: 12.4 m at $0.2 \mathrm{~g} / \mathrm{t}$ from 76.6 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	122	122.7	0.42	0.29	201.1	0.7 ZADD0009: 0.7 m at $0.4 \mathrm{~g} / \mathrm{t}$ from 122 m	Prim	$1 \mathrm{mc} / 0.1$
Ehuasso	ZADD0009	DD	126.35	126.8	0.14	0.06	201.1	0.45 ZADD0009: 0.5 m at $0.1 \mathrm{~g} /$ t from 126.35 m	Prim	$1 \mathrm{mc/o} 0.1$

End.

Competent Person Statement:

Information in this report relating to the exploration results is based on data reviewed by Mr Lennard Kolff (MEcon. Geol., BSc. Hons ARSM), Chief Geologist and Technical Director of the Company. Mr Kolff is a Member of the Australian Institute of Geoscientists who has in excess of 20 years' experience in mineral exploration and is a Qualified Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results. Mr Kolff consents to the inclusion of the information in the form and context in which it appears.

SIGNIFICANT EVENTS AFTER REPORTING DATE

On 10th March 2022, the company CEO, Vincent Mascolo suddenly passed away.

On $11^{\text {th }}$ March 2022, the company Chief Financial Officer \& Company Secretary Amanda Harsas was appointed to the Board as Director.

There have been no other events since the end of the half year that impact the financial report as at 31 December 2021.

Signed in accordance with a resolution of the Board of Directors:

Stuart Crow
Chairman
Sydney
Date: 13 April 2022

CONSOLIDATED STATEMENT OF PROFIT OR LOSS AND OTHER COMPREHENSIVE INCOME For the half year ended 31 December 2021

31 December 2021
 A\$
 31 December 2020 Notes

Revenue	-	-
Administration and consulting expenses	8,433	-
Audit Fee	15,000	-
(Loss) before income tax	$\mathbf{(2 3 , 4 3 3)}$	-
Income tax expense	3	$(14,637)$
Loss) for the period	$(38,070)$	-

Other comprehensive income (loss)
Items that may be reclassified to profit or loss
Exchange differences on translation of foreign operations $(5,447)$
Other comprehensive income (loss) for the period, net of tax $(5,447)$
Total comprehensive loss for the period
$(43,517)$

Loss per share

Basic earnings per share
Cents per share

Diluted earnings per share 4

CONSOLIDATED STATEMENT OF FINANCIAL POSITION

As at 31 December 2021

	31 December 2021	30 June 2021
Notes	A\$	A\$

Current assets

Cash and cash equivalents	5	$11,651,193$	100
Trade and other receivables	6	$1,986,973$	-
Other current assets		19,400	-
Total current assets	$\mathbf{1 3 , 6 5 7 , 5 6 6}$	$\mathbf{1 0 0}$	

Non-current assets

Property, plant and equipment	7	51,617	-
Exploration and evaluation assets	8	$29,515,437$	-
Total non-current assets	$\mathbf{2 9 , 5 6 7 , 0 5 4}$	-	
		$\mathbf{4 3 , 2 2 4 , 6 2 0}$	$\mathbf{1 0 0}$
Total assets			

Current liabilities

| Trade and other payables | 9 | 80,118 |
| :--- | ---: | ---: | ---: |
| Loans Payable | 10 | 219,390 |
| Total current liabilities | $\mathbf{2 9 9 , 5 0 8}$ | - |

\qquad

Net assets	42,925,112	100

Equity

Issued capital	11	$35,874,640$
Other Contributed Equity	12	$6,953,744$
Reserves		134,808
Accumulated losses	$(38,080)$	-

Total equity attributable to owners of
Ricca Resources Limited
42,925,112
100

CONSOLIDATED STATEMENT OF CHANGES IN EQUITY

For the half year ended 31 December 2021

	Issued Capital A\$	Other Contributed Equity A\$	Accumulated Losses A\$	Share Based Payments Reserve A\$	Foreign Currency Translation Reserve A\$	Total Equity A\$
Balance at 1 July 2020	100	-	-	-	-	100
Loss for the period	-	-	-	-	-	-
Other comprehensive income	-		-	-	-	-
Total comprehensive income for the period	-	-	-	-	-	-
Transactions with owners in their capacity as owners:						
Shares issued during the period	-	-	-	-	-	-
Share issue costs	-	-	-	-	-	-
Share based payments	-	-	-	-	-	-
Balance at 31 December 2020	100	-	-	-	-	100
Balance at 1 July 2021	100	-	-	-	-	100
Loss for the period	-	-	$(38,080)$	-	-	$(38,080)$
Other comprehensive income	-	-	-	-	$(5,447)$	$(5,447)$
Total comprehensive income for the period	-	-	$(38,080)$	-	$(5,447)$	$(43,527)$
Transactions with owners in their capacity as owners:						
Share issued during the period	36,488,039	-	-	-	-	36,488,039
Shares issue costs	$(613,499)$	-	-	-	-	$(613,499)$
Fair value of Net Assets Acquired	-	6,953,744	-	-	-	6,953,744
Share based payments	-	-	-	140,255	-	140,255
Balance at 31 December 2021	35,874,640	6,953,744	$(38,080)$	140,255	$(5,447)$	42,925,112

The above consolidated statement of changes in equity should be read in conjunction with the accompanying notes.

CONSOLIDATED STATEMENT OF CASH FLOWS

For the half year ended 31 December 2021

Notes	31 December 2021 A\$	$\begin{gathered} 31 \text { December } 2020 \\ \text { A\$ } \end{gathered}$
Cash flows from operating activities Payments to suppliers and employees	$(4,533)$	-
Net cash flows from operating activities	$(4,533)$	-
Cash flows from investing activities Payments for exploration and evaluation assets	$(327,684)$	-
Net cash flows from investing activities	$(327,684)$	-
Cash flows from financing activities Proceeds from share rights shares Cash Received as part of demerger Transactions costs on the issue of shares	$\begin{aligned} & 5,252,441 \\ & 7,238,862 \\ & (507,993) \end{aligned}$	-
Net cash flows from financing activities	11,983,310	-
Net decrease in cash and cash equivalents Cash and cash equivalents at the beginning of the period	$\begin{array}{r} 11,651,093 \\ 100 \end{array}$	-
Cash and cash equivalents at the end of the period	11,651,193	100

The above consolidated statement of cash flows should be read in conjunction with the accompanying notes.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Note 1: Summary of Significant Accounting Policies

Corporate information

The consolidated financial report of Ricca Resources Limited (the "Company") (formerly Malamute Minerals Proprietary Limited) for the half-year ended 31 December 2021 was authorised for issue in accordance with a resolution of the Directors on 13 April 2022. Ricca Resources Limited (the Parent) is a public unlisted company limited by shares incorporated and domiciled in Australia. The Company's registered office is located at Level 33, Australia Square, 264 George St, Sydney, Australia.

Basis of preparation

This half-year financial report for the period ended 31 December 2021 prepared in accordance with Australian Accounting Standard AASB 134 Interim Financial Reporting and the Corporations Act 2001, comprises the Company and its subsidiaries (together referred to as the "consolidated entity").

The half-year financial report does not include all notes of the type normally included within the annual financial report and therefore cannot be expected to provide as full an understanding of the financial performance, financial position and financing and investing activities of the Group as the full financial report.

Going concern

The half year financial report has been prepared on a going concern basis which contemplates the continuity of normal business activities and the realisation of assets and discharge of liabilities in the ordinary course of business. The Group has not generated revenues from operations.

The Directors believe that the going concern basis of preparation is appropriate as the Directors believe there is sufficient cash available for the Group to continue operating until it can raise sufficient further capital to fund its ongoing activities. The Group has a proven ability to raise the necessary funding or settle debts via the issuance of shares, as evidenced by the raising of \$14,171,803 for the half-year ended 31 December 2021.

Demerger

On 22nd December 2021, Atlantic Lithium Limited completed the demerger of Ricca Resources Limited (and accordingly the Gold Business in Ivory Coast and Chad), by way of a Capital Reduction and In-specie Distribution to its Eligible Shareholders. Eligible Atlantic Lithium Limited shareholders received an in-specie distribution of 1 Ricca Resources Limited share for every 8 Atlantic Lithium Limited Shares held at the In-specie Distribution Record Date (23 November 2021)

The carrying amount of assets and liabilities held for distribution was as follows:

	AS
Cash and Equivalents	$7,238,862$
Other Current Assets	21,131
Property Plant and Equipment	54,916
Exploration and Evaluation Assets	$29,158,012$
Total Assets	$36,472,921$
Trade, Loans and Other Payables	$(202,941)$
Carrying value of net assets distributed	$36,269,980$
Consideration paid	$29,316,236$
Net contribution to equity	$6,953,744$

Accounting Policies

(a) New Accounting Standards and Interpretations

The consolidated entity has adopted all the new or amended Accounting Standards and Interpretations issued by the Australian Accounting Standards Board ('AASB') that are mandatory for the current reporting period. The adoption of these new or amended accounting standards did not have a significant impact to the interim consolidated financial statements.

Any new or amended Accounting Standards or Interpretations that are not yet mandatory have not been early adopted.

(b) Basis of Consolidation

The consolidated financial statements comprise the financial statements of Ricca Resources Limited and its subsidiaries as at and for the period ended 30 June each year (the "consolidated entity").

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Accounting Policies (continued)

Subsidiaries

Subsidiaries are all those entities over which the consolidated entity has control. The consolidated entity controls an entity when the consolidated entity is exposed to, or has rights to, variable returns from its involvement with the entity and has the ability to affect those returns through its power to direct the activities of the entity. Subsidiaries are fully consolidated from the date on which control is transferred to the consolidated entity. They are de-consolidated from the date that control ceases.

The financial statements of the subsidiaries are prepared for the same reporting period as the parent company, using consistent accounting policies. In preparing the consolidated financial statements, all intercompany balances, transactions, unrealized gains and losses resulting from intra-group transactions and dividends have been eliminated in full.

Subsidiaries are fully consolidated from the date on which control is obtained by the Group and cease to be consolidated from the date on which control is transferred out of the Group.

Investments in subsidiaries held by Ricca Resources Limited are accounted for at cost in the separate financial statements of the parent entity less any impairment charges. the parent will assess whether any indicators of impairment of the carrying value of the investment in the subsidiary exist. Where such indicators exist, to the extent that the carrying value of the investment exceeds its recoverable amount, an impairment loss is recognised.

The acquisition of subsidiaries is accounted for using the acquisition method of accounting. The acquisition method of accounting involves recognising at acquisition date, separately from goodwill, the identifiable assets acquired, the liabilities assumed and any non-controlling interest in the acquiree. The identifiable assets acquired and the liabilities assumed are measured at their acquisition date fair values.

The difference between the above items and the fair value of consideration (including the fair value of any pre-existing investment in the acquiree) is goodwill or discount on acquisition.

After initial recognition, goodwill is measured at cost less any accumulated impairment losses. For the purpose of impairment testing, goodwill acquired in a business combination is, from the acquisition date, allocated to each of the Group's cash generating units that are expected to benefit from the combination, irrespective of whether other assets or liabilities of the acquiree are assigned to those units.

Where goodwill forms part of a cash generating unit and part of the operation within that unit is disposed of, the goodwill associated with the operation disposed of is included in the carrying amount of the operation when determining the gain or loss on disposal of the operation. Goodwill disposed of in this circumstance is measured based on the relative values of the operation disposed of and the portion of the cash generating unit retained.

Non-controlling interests are allocated their share of net profit after tax in the statement of profit or loss and other comprehensive income and presented within equity in the consolidated statement of financial position, separately from the equity of the owners of the parent.

Losses are attributed to the non-controlling interest even if that results in a deficit balance.
A change in ownership interest of a subsidiary that does not result in a loss of control, is accounted for as an equity transaction.

(c) Operating Segments

An operating segment is a component of a consolidated entity that engages in business activities from which it may earn revenues and incur expenses, whose operating results are regularly reviewed by the consolidated entity's chief operating decision maker to make decisions about resources to be allocated to the segment and assess its performance and for which discrete financial information is available. This may include start-up operations which are yet to earn revenues.

Operating segments that meet the quantitative criteria as prescribed by AASB 8, Operating Segments are reported separately. However, an operating segment that does not meet the quantitative criteria is still reported separately where information about the segment would be useful to users of the financial statements.

(d) Cash and Cash Equivalents

For the statement of cash flows, cash and cash equivalents include cash on hand, deposits held at call with banks, other short term highly liquid investments with original maturities of three months or less, and bank overdrafts. Bank overdrafts are shown within short-term borrowings in current liabilities on the statement of financial position.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Accounting Policies (continued)

(e) Property, Plant and Equipment

Property, plant and equipment are stated at historical cost less accumulated depreciation and any accumulated impairment losses.

Depreciation

The depreciable amount of all property, plant \& equipment is depreciated over their useful life to the Group commencing from the time the asset is held ready for use.

The depreciation rates used for each class of assets are:

Class of Property, plant and equipment	Depreciation
Plant and Equipment	$10 \%-30 \%$ Straight line
Office Equipment	33.3% Straight line
Motor Vehicles	25% Straight line

Gains and losses on disposals are determined by comparing proceeds with the carrying amount. These are included in the statement of profit or loss and other comprehensive income.

Derecognition

An item of property, plant and equipment is derecognised upon disposal or when no further future economic benefits are expected from its use or disposal.

(f) Exploration and Evaluation Assets

Exploration and evaluation expenditure incurred is accumulated in respect of each identifiable area of interest. Such expenditures comprise net direct costs and an appropriate portion of related overhead expenditure but do not include overheads or administration expenditure not having a specific nexus with a particular area of interest. These assets are only carried forward to the extent that they are expected to be recouped through the successful development of the area or where activities in the area have not yet reached a stage which permits reasonable assessment of the existence of economically recoverable reserves and active or significant operations in relation to the area are continuing.

The exploration and evaluation expenditures incurred in respect of earn-in arrangements have been capitalised in accordance with AASB 6.

A regular review has been undertaken on each area of interest to determine the appropriateness of continuing to carry forward assets in relation to that area of interest.

A provision is raised against exploration and evaluation expenditure where the Directors are of the opinion that the carried forward net cost may not be recoverable or the right of tenure in the area lapses. The increase in the provision is charged against the results for the period. Accumulated costs in relation to an abandoned area are written off in full against profit in the year in which the decision to abandon the area is made.

(g) Impairment of Non-Financial Assets

At each reporting date, the Group reviews the carrying values of its tangible assets to determine whether there is any indication that those assets have been impaired. If such an indication exists, the recoverable amount of the asset, being the higher of the asset's fair value less costs to sell and value in use, is compared to the asset's carrying value. Any excess of the asset's carrying value over its recoverable amount is expensed to the profit or loss.

Where it is not possible to estimate the recoverable amount of an individual asset, the Group estimates the recoverable amount of the cash-generating unit to which the asset belongs.

(h) Trade and Other Payables

Trade and other payables are carried at amortised cost and due to their short-term nature, they are not discounted. They represent liabilities for goods and services provided to the Group prior to the end of the financial year that are unpaid and arise when the Group becomes obliged to make future payments in respect of the purchase of these goods and services. The amounts are unsecured and are usually paid within 30-60 days of recognition.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Accounting Policies (continued)

(i) Share Capital

Ordinary shares are classified as equity at the time that they are issued. Costs directly attributable to the issue of new shares are shown as a deduction from the equity proceeds, net of any income tax benefit.

(j) Share-Based Payments

The Group may provide benefits to Directors, employees or consultants in the form of share-based payment transactions, whereby services may be undertaken in exchange for shares or options over shares ("equity-settled transactions").

The fair value of options granted to Directors, employees and consultants is recognised as an expense with a corresponding increase in equity (share based payments reserve). The fair value is measured at grant date and recognised over the period during which the recipients become unconditionally entitled to the options. Fair value is determined using a Black-Scholes or Monte Carlo option pricing model. An expense is still recognised for options that do not ultimately vest because a market condition was not met.

Where the terms of options are modified, the expense continues to be recognised from grant date to vesting date as if the terms had never been changed. In addition, at the date of the modification, a further expense is recognised for any increase in fair value of the transaction as a result of the change.

Where options are cancelled, they are treated as if vesting occurred on cancellation and any unrecognised expenses are taken immediately to the profit or loss. If new options are substituted for the cancelled options and designated as a replacement, the combined impact of the cancellation and replacement options are treated as if they were a modification.

(k) Income Tax

The income tax expense for the period is the tax payable on the current period's taxable income rate for each jurisdiction adjusted by changes in deferred tax assets liabilities attributable to temporary differences between the tax base of assets and liabilities and their carrying amounts in the financial statements, and to unused tax losses.

The charge for current income tax expense is based on the profit for the year adjusted for any non-assessable or disallowed items. It is calculated using the tax rates that have been enacted or are substantially enacted by the reporting date.

Deferred tax is recognised for all temporary differences arising between the tax bases of assets and liabilities and their carrying amounts in the financial statements. No deferred income tax will be recognised from the initial recognition of an asset or liability, excluding a business combination, where there is no effect on accounting or taxable profit or loss.

Deferred tax is calculated at the tax rates expected to apply to the period when the asset is realised or liability is settled. Deferred tax is recognised in the statement of profit or loss and other comprehensive income except where it relates to items that may be recognised directly in equity, in which case the deferred tax is adjusted directly against equity. Deferred income tax assets are recognised to the extent that it is probable that future tax profits will be available against which deductible temporary differences can be utilised.

The amount of benefits brought to account or which may be realised in the future is based on the assumption that no adverse change will occur in income taxation legislation and the anticipation that the group will derive sufficient future assessable income to enable the benefit to be realised and comply with the conditions of deductibility imposed by the law.

Current tax assets and liabilities are offset where a legally enforceable right of set-off exists and it is intended that net settlement or simultaneous realisation and settlement of the respective asset and liability will occur. Deferred tax assets and liabilities are offset where a legally enforceable right of set-off exists, the deferred tax assets and liabilities relate to income taxes levied by the same taxation authority on either the same taxable entity or different taxable entities where it is intended that net settlement or simultaneous realisation and settlement of the respective asset and liability will occur in future periods in which significant amounts of deferred tax assets or liabilities are expected to be recovered or settled.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Accounting Policies (continued)

(I) GST

Revenues, expenses and assets are recognised net of GST except where GST incurred on a purchase of goods and services is not recoverable from the taxation authority, in which case the GST is recognised as part of the cost of acquisition of the asset or as part of the expense item.

Receivables and payables are stated with the amount of GST included. The net amount of GST recoverable from, or payable to, the taxation authority is included as part of receivables or payables in the statement of financial position.

Cash flows are included in the statement of cash flows on a gross basis and the GST component of cash flows arising from investing and financing activities, which is recoverable from, or payable to, the taxation authority, are classified as operating cash flows.

Commitments and contingencies are disclosed net of the amount of GST recoverable from, or payable to, the taxation authority.

(m) Earnings per Share

Basic earnings per share is calculated as net profit (loss) attributable to members of the parent, adjusted to exclude any costs of servicing equity other than ordinary shares, divided by the weighted average number of ordinary shares.

Diluted earnings per share adjust the figures used in the determination of basic earnings per share to take into account:

- The after tax effect of interest and other financing costs associated with dilutive potential ordinary shares; and
- The weighted average number of additional ordinary shares that would have been outstanding assuming the conversion of all dilutive potential ordinary shares.

(n) Foreign Currencies

Items included in the financial statements of each of the Group entities are measured using the currency of the primary economic environment in which the entity operates ('the functional currency'). The consolidated financial statements are presented in Australian dollars, which is the Company's functional and presentation currency.

Foreign currency transactions are translated into the functional currency using the exchange rates prevailing at the dates of the transactions. Foreign exchange gains and losses resulting from the settlement of such transactions and from the translation at year end exchange rates of monetary assets and liabilities denominated in foreign currencies are recognised in profit or loss.

Exchange differences arising from the translation of financial statements of foreign subsidiaries are taken to the foreign currency translation reserve at the reporting date.

(o) Fair value measurement

When an asset or liability, financial or non-financial, is measured at fair value for recognition or disclosure purposes, the fair value is based on the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date; and assumes that the transaction will take place either: in the principal market; or in the absence of a principal market, in the most advantageous market.

Fair value is measured using the assumptions that market participants would use when pricing the asset or liability, assuming they act in their economic best interest. For non-financial assets, the fair value measurement is based on its highest and best use. Valuation techniques that are appropriate in the circumstances and for which sufficient data are available to measure fair value, are used, maximising the use of relevant observable inputs and minimising the use of unobservable inputs.

Assets and liabilities measured at fair value are classified, into three levels, using a fair value hierarchy that reflects the significance of the inputs used in making the measurements. Classifications are reviewed each reporting date and transfers between levels are determined based on a reassessment of the lowest level input that is significant to the fair value measurement.

For recurring and non-recurring fair value measurements, external valuers may be used when internal expertise is either not available or when the valuation is deemed to be significant. External valuers are selected based on market knowledge and reputation. Where there is a significant change in fair value of an asset or liability from one period to another, an analysis is undertaken, which includes a verification of the major inputs applied in the latest valuation and a comparison, where applicable, with external sources of data.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Accounting Policies (continued)

(p) Critical Accounting Estimates and Judgments

The Directors evaluate estimates and judgments incorporated into the financial report based on historical knowledge and best available current information. Estimates assume a reasonable expectation of future events and are based on current trends and economic data, obtained both externally and within the Group.

Key judgments - exploration \& evaluation assets

The Group performs regular reviews on each area of interest to determine the appropriateness of continuing to carry forward costs in relation to that area of interest. These reviews are based on detailed surveys and analysis of drilling results performed to reporting date.

Key judgments - share based payment transactions
The Group measures the cost of equity settled transactions with Underwriter and Sub-underwriters by reference to the fair value of the equity instruments at the date at which they are granted. The fair value is determined by using the Black-Scholes model taking into account the terms and conditions upon which the instruments were granted. The accounting estimates and assumptions relating to equity settled share based payments would have no impact on the carrying amounts of assets and liabilities within the next reporting period but may impact the profit or loss and equity. Refer to note 13 for details.

Note 2: Segment Information

The Group has identified its operating segment based on the internal reports that are reviewed and used by the Board of Directors (chief operating decision makers) in assessing performance and determining the allocation of resources. The Group is managed primarily on a geographic basis, that is, the location of the respective areas of interest (tenements) in Chad and Ivory Coast. Operating segments are determined based on financial information reported to the Board for the Group as a whole. The Group does not yet have any products or services from which it derives an income.

Accordingly, management currently identifies the Group as having only one reportable segment, being exploration for base and precious metals. The financial results from this segment are equivalent to the financial statements of the Group. There have been no changes in the operating segments during the half year.

Geographical Information

Geographical - non-current assets	
31 December 2021	30 June 2021
A\$	A\$

[^0]| $6,923,105$ | - |
| ---: | ---: |
| $22,643,949$ | - |
| $29,567,054$ | - |

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Note 3. Income Tax
Components of tax expense recognised directly in equity
Net deferred tax - debited (credited) directly to equity
Derecognise temporary differences through equity

The prima facie tax on profit / (loss) before income tax is reconciled to the income tax expense as follows:
Prima facie tax on profit / (loss) before income tax at 30\% (2020: 30\%)
Add tax effect of:
Current tax loss not recognised
Income tax expense

Note 4: Loss Per Share (EPS)
(a) Loss

Loss used to calculate basic and diluted EPS
(b) Weighted average number of shares

Weighted average number of ordinary shares outstanding during the period, used in calculating basic earnings per share Weighted average number of dilutive options, warrants, and performance rights outstanding during the period Weighted average number of ordinary shares and potential ordinary shares outstanding during the period, used in calculating diluted earnings per share

31 December 2021 A\$

31 December 2020
A\$

$(146,368)$
131,731
$(14,637)$
$(7,030)$
21,667
14,637

$(38,080)$

Number of Shares

15,676,144
100
\qquad
\qquad

15,676,144 100

31 December 2021	30 June 2021
A\$	A\$

Note 5. Cash and Cash Equivalents

Cash at bank	$11,617,766$	-
Petty Cash	33,427	100
$11,651,193$	100	

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

(1) Placement fees receivable relates to monies owing on the rights issue on 22 December 2021. This was paid in the following months.

GST and Other receivables are non-interest bearing.
No allowance for credit loss has been recorded for the current reporting period.

Due to the short-term nature of these receivables, their carrying value is assumed to approximate fair value. The maximum exposure to credit risk is the carrying value of receivables. Collateral is not held as security.

Note 7. Property, Plant and Equipment

Balance at 01 July 2021
Additions
Depreciation
At 31 December 2021 net of accumulated depreciation

Motor Vehicle	Plant and Equipment	Office Equipment	Total	
A\$	A\$	A\$	A\$	
-	-	-	-	
38,462		-	15,587	54,049
$(1,795)$	-	(637)	$(2,432)$	
$\mathbf{3 6 , 6 6 7}$		-	$\mathbf{1 4 , 9 5 0}$	$\mathbf{5 1 , 6 1 7}$

Note 8. Exploration and Evaluation Assets

Exploration and evaluation assets
29,515,437

Movements in carrying amounts

Opening Balance as at 01 July
Acquisition of Atlantic Lithium Limited Gold Portfolio (1)
Additions
Balance at the end of the period

31 December 2021	30 June 2021
6 months	12 months
A\$	A\$

30 June 2021

A\$

1) On 1st December, Ricca Resources Limited acquired Atlantic Lithium Limited gold portfolio in Ivory Coast and Chad. On 22 December Atlantic Lithium Limited completed the demerger of Ricca Resources Limited. Atlantic Lithium completed the demerger of Ricca Resources Limited (and accordingly the Gold Business in Ivory Coast and Chad), by way of a Capital Reduction and In-specie Distribution to its Eligible Shareholders. Eligible Atlantic Lithium Limited shareholders received an in-specie distribution of 1 Ricca Resources Limited share for every 8 Atlantic Lithium Limited Shares held at the In-specie Distribution Record Date (23 November 2021). The Gold portfolio purchased was at market value which was valued by an independent consultant.

The recoverability of the carrying amount of exploration and evaluation assets is dependent on the successful development and commercial exploitation or alternatively, sale of the respective areas of interest.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

31 December 2021	30 June 2021
A\$	A\$

Note 9. Trade and Other Payables

Trade payables	21,673	
Sundry payables and accrued expenses	58,445	$\mathbf{8 0 , 1 1 8}$

The Loans are interest free and have no fixed terms of repayment. They are considered to be short term loans.

$\begin{gathered} 31 \text { December } 2021 \\ \text { A\$ } \end{gathered}$	$\begin{gathered} 30 \text { June } 2021 \\ \text { A\$ } \end{gathered}$
36,488,139	100
$(613,499)$	-
35,874,640	100

Ordinary shares participate in dividends and the proceeds on winding up the Company. At shareholder meetings each ordinary share is entitled to one vote when a poll is called, otherwise each shareholder has one vote on show of hands.

(b) Reconciliation of issued and paid-up capital

At 30 June 2021	Number of Shares	$\mathbf{A} \boldsymbol{\$}$
$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	
	$29,316,236$	
$71,718,031$	$7,171,803$	
$\mathbf{1 4 3 , 4 3 5 , 9 9 6}$	$\mathbf{3 6 , 4 8 8 , 1 3 9}$	

(1) On 30 November 2021, 71,717,865 $\$ 0.10$ ordinary shares were issued to Atlantic Lithium Limited in exchange for Ivory Coast net assets of $\$ 22,316,236$ and a cash payment of $\$ 7,000,000$.
(2) On 22 December $202171,718,031 \$ 0.10$ ordinary shares were issued by the way of a rights issue.

On 22 December Atlantic Lithium Limited completed the demerger of Ricca Resources Limited (and accordingly the Gold Business in Ivory Coast and Chad), by way of a Capital Reduction and In-Specie Distribution to Eligible Shareholders.

(c) Options

As at 31 December 2021, there were 7,171,803 unissued ordinary shares of Ricca Resources Limited under options held as follows:

- $\quad 7,171,803$ unlisted options to take up one ordinary share in Ricca Resources Ltd at an exercise price of $\$ 0.25$. The options vested immediately and expire 22 June 2024 (refer to note 12).

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Note 12. Other Contributed Equity

31 December 2021 A\$	30 June 2021 A\$
$6,953,744$	
$6,953,744$	

On $1^{\text {st }}$ December Ricca Resources Limited acquired Chad net assets of $\$ 6,953,744$ for no consideration. These assets were recorded at fair value with a corresponding credit to equity reflecting the contribution from the parent entity at the time, Atlantic Lithium Limited.

Note 13. Share Based Payments

Share based payments charged to Share Issue Costs during the half year is shown in the table below:
31 December 2021
A $\$$

31 December 2020
A\$

Arising from equity settled share-based payment transactions:
Share Options charged to Share Issue Costs \qquad

Options Granted

On 22 December 2021, 7,171,803 Ricca Resources Limited share options were granted to the Underwriter and Sub-underwriters of the Rights Issue. The options are to take up one ordinary share in Ricca Resources Limited at $\$ 0.25$ per share. The options vested immediately and are due to expire on 22 June 2024.

The following table illustrates the number and weighted average exercise prices (WAEP) of, and movements in, share based payment share options granted during the period:

	1 July 2021-31 Dec 2021 No.	1 July 2021-31 Dec 2021 WAEP
Outstanding at the beginning of the year	-	-
Granted during the period	7,171,803	\$0.25
Outstanding at the end of the period	7,171,803	\$0.25
Exercisable at the end of the period	7,171,803	\$0.25

	Options Granted		
Weighted average exercise price	$\mathbf{1}$ July $\mathbf{2 0 2 1}$ to $\mathbf{3 1}$ December $\mathbf{2 0 2 1}$	$\mathbf{\$ 0 . 2 5}^{\text {Weighted average life of the option }}$	2.5 years
:---			
Underlying share price			
Expected share price volatility			
Risk free interest rate			
Number of options issued			
Fair value (black-scholes) per option			
Total value of options issued			

Expected share price volatility was estimated based on historical share price volatility.

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Note 14: Contingent Assets

1. Atlantic Lithium Limited owns $5,500,000$ shares in Australasian Metals Limited (formerly Australasian Gold Limited) with a market value on 31 December 2021 of $\$ 2,860,000$ (30 June 2021: $\$ 797,500$). Should Atlantic Lithium Limited decide to dispose all or any of this investment, then 50% of the consideration will be payable to Ricca Resources Limited within 10 days of the disposal.
2. Atlantic Lithium Limited has an investment of $1,000,000$ in the ordinary issued capital of Auburn Resources Ltd, an unlisted public company incorporated in Australia. The valuation of $\$ 125,000$ on 31 December 2021 (30 June 2021: $\$ 125,000$) is based on share capital placement on 1 July 2021. Should Atlantic Lithium Limited decide to dispose all or any of this investment, then 50% of the consideration will be payable to Ricca Resources Limited within 10 days of the disposal.

The Directors are not aware of any other contingent assets at the date of this report.

Note 15: Contingent Liabilities

The Directors are not aware of any contingent liabilities at the date of this report.

Note 16: Fair Value Measurement

Fair value hierarchy

The following tables detail the consolidated entity's financial assets and liabilities, measured or disclosed at fair value, using a three level hierarchy, based on the lowest level of input that is significant to the entire fair value measurement, being:
Level 1: Quoted prices (unadjusted) in active markets for identical assets or liabilities that the entity can access at the measurement date Level 2: Inputs other than quoted prices included within Level 1 that are observable for the asset or liability, either directly or indirectly Level 3: Unobservable inputs for the asset or liability

Level 1	Level 2	Level 3
A\$	A\$	A\$

Consolidated -31 December 2021

Exploration and Evaluation assets at fair value through equity
Total Assets

-	-	$29,158,012$
-	$-29,158,012$	
	-	-
-	-	-

There were no transfers between levels during the financial half-year.

Valuation techniques for fair value measurements categorised within level 1

Level 3 assets and liabilities
The Exploration and Evaluation assets at fair value through equity are measured based on a valuation performed by an independent consultant.

Note 17: Related Party Transactions

Key management personnel
There were no transactions with key management personnel during the current and previous reporting period.

Transactions with related parties

Other than the acquisition of Ricca Resource from Atlantic Lithium (Refer to Note $\mathbf{1}$ for details), there were no transactions with related parties during the current and previous reporting period.

Receivable from and payable to related parties
There were no trade receivables from or trade payables to related parties during the current and previous reporting period

Loans to/from related parties

There were no loans to or from related parties during the current and previous reporting period

NOTES TO THE FINANCIAL STATEMENTS

For the half year ended 31 December 2021

Note 18: Subsidiaries

The consolidated financial statements include the financial statements of Ricca Resources Limited and the subsidiaries listed in the following table:

| Name | Country of incorporation | Equity interest (\%) | |
| :--- | :--- | :--- | :--- | :--- |
| 31 December 2021 | | | |
| Booster Minerals Pty Ltd | Australia | 100 | - |
| Boxworx Minerals Pty Ltd | Australia | 100 | - |
| CAPRI Metals Pty Ltd | Australia | 100 | - |
| DIVO Metals Pty Ltd | Australia | 100 | - |
| Hard Yard Metals Pty Ltd | Australia | 100 | - |
| Harrier Minerals Pty Ltd | Australia | 100 | - |
| Marlin Minerals Pty Ltd | Australia | 100 | - |
| Matilda Minerals Pty Ltd | Australia | 100 | - |
| PITA MineraIs Pty Ltd | Australia | 100 | - |
| Rhodesian Resources Pty Ltd | Australia | 100 | - |
| Scope Resources Pty Ltd | Australia | 100 | - |
| Stark Metals Pty Ltd | Australia | 100 | - |
| UHITSA Minerals Pty Ltd | Australia | 100 | - |
| Booster Minerals SARL | Cote d'Ivoire | 100 | - |
| Boxworx Minerals SARL | Cote d'Ivoire | 100 | - |
| CAPRI Metals SARL | Cote d'Ivoire | 100 | - |
| DIVO Metals SARL | Cote d'Ivoire | 100 | - |
| Hard Yard Metals SARL | Cote d'Ivoire | 100 | - |
| Harier Minerals SARL | Cote d'Ivoire | 100 | - |
| Malamute Minerals SARL | Cote d'Ivoire | 100 | - |
| Marlin Minerals SARL | Cote d'Ivoire | 100 | - |
| Matilda Minerals SARL | Cote d'Ivoire | 100 | - |
| PITA MineraIs SARL | Cote d'Ivoire | 100 | - |
| Rhodesian Resources SARL | Cote d'Ivoire | 100 | - |
| Scope Resources SARL | Cote d'Ivoire | 100 | - |
| Stark Metals SARL | Cote d'Ivoire | 100 | - |
| UHITSA Minerals SARL | Cote d'Ivoire | 100 | - |
| Tekton Minerals Pte Ltd | Singapore | 100 | - |

Note 19: Subsequent Events

On 10th March 2022, the company CEO, Vincent Mascolo suddenly passed away
On 11th March 2022, the company Chief Financial Officer \& Company Secretary Amanda Harsas was appointed to the Board as Director.

There have been no other events since the end of the half year that impact the financial report as at 31 December 2021.

DIRECTORS' DECLARATION

In accordance with a resolution of the Directors of Ricca Resources Limited, I state that: In
the opinion of the Directors:

1. The attached half-year financial report and notes of the consolidated entity are in accordance with the Corporations Act 2001, including:
(a) Giving a true and fair view of the financial position as at 31 December 2021 and the performance for the half-year ended on that date of the consolidated entity; and
(b) Complying with Accounting Standard AASB 134 Interim Financial Reporting and the Corporations Regulations 2001.
2. There are reasonable grounds to believe that the company will be able to pay its debts as and when they become due and payable.

On behalf of the Board

Stuart Crow
Chairman
Sydney
Date: 13 April 2022

AUDITOR'S INDEPENDENCE DECLARATION

Tel: +61 732375999
Level 10, 12 Creek St
Fax: +61 732219227
Brisbane QLD 4000
www.bdo.com.au

DECLARATION OF INDEPENDENCE BY R M SWABY TO THE DIRECTORS OF RICCA RESOURCES LIMITED

As lead auditor of Ricca Resources Limited for the half-year ended 31 December 2021, I declare that, to the best of my knowledge and belief, there have been:

1. No contraventions of the auditor independence requirements of the Corporations Act 2001 in relation to the audit; and
2. No contraventions of any applicable code of professional conduct in relation to the audit.

This declaration is in respect of Ricca Resources Limited and the entities it controlled during the period.

RM Swaby
Director

BDO Audit Pts Ltd

Brisbane
13 April 2022

INDEPENDENT AUDITOR'S REVIEW REPORT

To the members of Ricca Resources Limited

Report on the Half-Year Financial Report

Conclusion

We have reviewed the half-year financial report of Ricca Resources Limited (the Company) and its subsidiaries (the Group), which comprises the statement of financial position as at 31 December 2021, the statement of profit or loss and other comprehensive income, the statement of changes in equity and the statement of cash flows for the half-year ended on that date, a summary of statement of accounting policies and other explanatory information, and the directors' declaration.

Based on our review, which is not an audit, we have not become aware of any matter that makes us believe that the accompanying half-year financial report of the Group does not comply with the Corporations Act 2001 including:
(i) Giving a true and fair view of the Group's financial position as at 31 December 2021 and of its financial performance for the half-year ended on that date; and
(ii) Complying with Accounting Standard AASB 134 Interim Financial Reporting and the Corporations Regulations 2001.

Basis for conclusion

We conducted our review in accordance with ASRE 2410 Review of a Financial Report Performed by the Independent Auditor of the Entity. Our responsibilities are further described in the Auditor's Responsibilities for the Review of the Financial Report section of our report. We are independent of the Company in accordance with the auditor independence requirements of the Corporations Act 2001 and the ethical requirements of the Accounting Professional and Ethical Standards Board's APES 110 Code of Ethics for Professional Accountants (including Independence Standards) (the Code) that are relevant to the audit of the annual financial report in Australia. We have also fulfilled our other ethical responsibilities in accordance with the Code.

We confirm that the independence declaration required by the Corporations Act 2001 which has been given to the directors of the Company, would be the same terms if given to the directors as at the time of this auditor's review report.

Responsibility of the directors for the financial report

The directors of the Company are responsible for the preparation of the half-year financial report that gives a true and fair view in accordance with Australian Accounting Standards and the Corporations Act 2001 and for such internal control as the directors determine is necessary to enable the preparation of the half-year financial report that gives a true and fair view and is free from material misstatement, whether due to fraud or error.

Auditor's responsibility for the review of the financial report

Our responsibility is to express a conclusion on the half-year financial report based on our review. ASRE 2410 requires us to conclude whether we have become aware of any matter that makes us believe that the half-year financial report is not in accordance with the Corporations Act 2001 including giving a true and fair view of the Group's financial position as at 31 December 2021 and its financial performance for the half-year ended on that date and complying with Accounting Standard AASB 134 Interim Financial Reporting and the Corporations Regulations 2001.

A review of a half-year financial report consists of making enquiries, primarily of persons responsible for financial and accounting matters, and applying analytical and other review procedures. A review is substantially less in scope than an audit conducted in accordance with Australian Auditing Standards and consequently does not enable us to obtain assurance that we would become aware of all significant matters that might be identified in an audit. Accordingly, we do not express an audit opinion.

BDO Audit Pts Ltd

RM Swaby
Director

Brisbane, 13 April 2022

[^0]: Chad
 Ivory Coast

